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ABSTRACT

We are interested in asymmetric human-robot teams adhering to a “supervisor-

worker” relationship, where the human supervisor occasionally takes over control

to aid an autonomous robot agent in its given task. Our research aims to increase

and maintain efficient collaboration by improving the robot’s task performance,

decreasing the human’s workload, and sustaining high levels of satisfaction. We

address this problem through the lens of trust, which is pervasive among such

human-robot teams, and is inherently linked to all of the above efficiency facets.

Our contributions revolve around a novel “trust-seeking robot framework” that

augments an arbitrary robot agent with the abilities to sense and react to the hu-

man’s changing trust state. This framework includes a fluid interaction paradigm

that enables non-expert users to train and help robot agents adapt to changing task

conditions. We also elaborate on multiple large-scale user studies that investigated

factors from the interaction experience which influence the rapidly-changing dy-

namics of trust. Building upon these empirical insights, we propose a personal-

ized, probabilistic model for inferring the human’s moment-to-moment trust state.

This trust inference engine extends the two dominant modeling approaches used

in the literature, attains greater prediction accuracy compared to several existing

techniques, and features the unique ability to update trust beliefs in real time. We

further introduce the first-ever realization of robot agents that react in direct re-

sponse to the human’s trust losses and actively work to restore efficient teamwork.

Finally, we demonstrate the diverse efficiency gains of these trust-seeking robots

through both extensive controlled experiments as well as challenging real-world

field deployments with aerial drones, wheeled robots, and autonomous cars.
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RÉSUMÉ

Nous sommes intéressés par les équipes homme-robot asymétriques qui adhèrent

à une relation � superviseur-travailleur � où le superviseur humain prend de temps

en temps le contrôle du robot pour aider l’agent robotique autonome dans sa tâche.

Notre recherche vise à augmenter et à maintenir des collaborations efficaces par

l’amélioration de la performance du robot, la réduction de la charge de travail du

superviseur, et le maintien d’un niveau de satisfaction élevé. Nous abordons ce

problème en utilisant la perspective de la confiance, qui est répandue parmi les

équipes homme-robot, et est liée de façon inhérente à toutes les facettes précédemment

citées de l’efficacité.

Nos contributions sont centrées autour d’un nouveau � système de l’agent ro-

botique fiable � qui améliore un agent arbitraire en lui conférant des capacités de

détecter et de réagir à l’état changeant de la confiance de l’humain. Ce système

comprend un paradigme d’interaction fluide qui permet aux utilisateurs non-experts

d’aider les agents à adapter à leurs conditions de tâches changeantes. Nous présentons

également plusieurs études contrôlées à grande échelle pour enquêter sur les fac-

teurs provenant de l’expérience d’interaction qui influencent la dynamique à court

terme de la confiance. Équipés de ces connaissances empiriques, nous proposons

un modèle probabiliste personnalisé pour inférer l’état de la confiance de l’humain

à chaque instant au cours des interactions. Ce modèle de la confiance étend les

deux approches de modélisation dominantes utilisées dans la littérature, et atteint

des prédictions de l’état de la confiance plus précises par rapport à plusieurs tech-

niques existantes. Ce modèle offre aussi la particularité unique de mettre à jour ces

estimations de la confiance en temps réel. En outre, nous introduisons la première

v



réalisation d’agents robotiques qui réagissent directement aux pertes de la confi-

ance provenant de l’humain, et qui travaillent activement à rétablir une collabora-

tion efficace. Enfin, nous démontrons les divers avantages d’efficacité de ces agents

robotiques fiables à travers plusieurs études contrôlées, et nous avons également ef-

fectué des déploiements dans des environnements difficiles avec des drones aériens,

des robots à roues, et des voitures autonomes.
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Chapter 1
Introduction

This thesis is motivated by the desire to establish and maintain efficient col-

laboration between autonomous mobile robots and their human users. There are a

wide variety of robot platforms with autonomous capabilities in common use to-

day, including aerial drones, sea gliders, and household cleaning robots. Manned

vehicles are also being equipped with increasingly sophisticated autonomous capa-

bilities, such as adaptive cruise control and auto-steering for cars, as well as auto-

mated takeoff, landing, and navigation features for aircraft. These mobile robots

all require the collaboration of one or more humans, either remotely or on site,

that are responsible for deploying, monitoring, and possibly guiding these robots to

complete their tasks, as seen in Figure 1–1.

Research on mobile robots and vehicle automation have been primarily fo-

cused on enhancing their capabilities and task performance. Such efforts are essen-

tial toward maximizing the efficiency of these human-robot teams. Nevertheless, an

equally vital yet often overlooked related aspect is the interaction between robots

and their human operators. Rich and frequent interactions allow teams to synergize

effectively, by coupling the robot’s comprehensive planning and rapid execution ca-

pabilities together with the human’s innate problem-solving and decision-making
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(a) Unicorn Aerial Drone [90] (b) AR.Drone Quadrotor [70]

(c) SL-Commander Smart Car [10] (d) Husky Wheeled Platform [76]

(e) Aqua Swimming Robot [28] (f) Heron Autonomous Vessel [75]

Figure 1–1: Our research aims to establish efficient interactions and teamwork be-
tween humans and autonomous mobile robots operating in diverse domains.

skills. Such team synergy is especially important for coping with dynamic or un-

expected changes to the task objectives and the environmental conditions. Conse-

quently, our research in this thesis will aim to simultaneously improve task per-

formance as well as enforcing high level of user satisfaction, toward maintaining

efficient team collaborations.
2



1.1 The Roles of Trust

We postulate that trust — one’s belief in another’s competence and reliability

— is the cornerstone of all long-lasting collaboration, both among human team-

mates, as well as between humans and robots. This view is grounded on the vital

roles that trust occupies within the workplace, for instance between a lead engineer

and a junior assistant. Strong degrees of trust allow the lead engineer to confidently

delegate tasks to the assistant while undertaking other duties in parallel. On the

other hand, if the lead distrusts the assistant, then he might be inclined to double-

check or repeat the delegated task. In extreme cases, the senior engineer may even

cease to delegate tasks altogether and choose to work alone.

These scenarios also occur in human-robot teams that are characterized by

similar asymmetric relationships. Imagine an example of a driver is experiment-

ing with the automated lane-keeping feature of her new car. Despite being initially

anxious when engaging the autopilot, she slowly builds confidence as the vehicle

continues to drive smoothly on the road on its own. Suddenly, another vehicle

approaches the left side aggressively, and the self-driving car reacts by abruptly

swerving to its right to make way. Although both vehicles continue to operate

safely, the autonomous car’s driver, however, is taken back by the sudden jerk mo-

tion and thus decides to switch off the autopilot until the aggressive motorist speeds

away. This scenario demonstrates that as trust accumulates, the user increases the

degree of dependency and task delegation toward the autonomous robot, while in

contrast, trust losses can cause the human to disregard the robot in favor of man-

ual execution. Moreover, on an even broader scope, this example illustrates the

essential and pervasive natures of trust as seen in our everyday interactions with

automated systems onboard vehicles and other embodiments.

It is important to acknowledge that trust influences human-robot teams in more

ways than one, similar to its influences at the workplace. The previous scenarios

3



focused on the impacts of trust on the performance of an individual’s work. A dis-

tinct way that trust affects relationships is by putting into question one’s intentions,

ethics, or integrity [42]. These intention-centric elements naturally carry over to

human-robot teams as well: for instance, the driver in our autonomous car scenario

may be concerned that the vehicle’s controller might not always make his well-

being the highest priority. These concerns are often driven by survival instinct, and

some would further argue that these fears are justified based upon age-old philo-

sophical paradoxes such as the trolley dilemma [61]. In particular, researchers have

found that while users approved of autonomous cars with utilitarian or “Vulcan”1

mindsets, they would personally prefer to ride in vehicles that protected passengers

at all costs [8]. The complexities of these issues speak to the richness of the notion

of trust as seen in human-robot teams.

On the other hand, this thesis focuses purely on “performance-centric”

facets of human-robot trust. Despite having fewer profound quandaries, we be-

lieve that these aspects are more amenable to be modeled by rational and math-

ematical principles. Consequently, all of our empirical studies included explicit

instructions assuring that our robot systems were programmed solely to complete

tasks and duties in a subservient and non-adversarial manner.

Returning to the workplace scenario, a conscientious assistant would be able

to infer a sense of distrust by observing the lead engineer’s actions, or more specif-

ically, a reduction or lack in task delegation. Consequently, this assistant would

then try to change behaviors and improve performance, in order to seek to regain

1 The fictitious Vulcan race in the Star Trek franchise is known for having logical
and utilitarian mindsets, with a famous quote from the popular character Spock:
“Logic clearly dictates that the needs of the many outweigh the needs of the few.”
Similarly, an utilitarian autonomous vehicle will risk the life of its passengers in
collision situations that would otherwise harm a greater number of pedestrians.
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the lead’s trust (and avoid being re-assigned or demoted). We thus observe that not

only is trust useful for characterizing the nature of collaboration, the need to seek

trust creates additional types of interactions for maintaining healthy teamwork.

Our research capitalizes on the diverse roles of trust to enforce efficient col-

laboration for asymmetric human-robot teams. We use trust to gauge the quality

of existing interactions between human operators and autonomous robots, and also

imbue robots with adaptive behaviors for eliciting trust and preserving ongoing

teamwork. This “trust-seeking robot methodology” is driven by the core belief

that if humans can remedy their mistakes to regain others’ trust, then robot agents

should be able to capitalize on this capacity as well!

1.2 Interaction Context: Supervisor-Worker Teams

This thesis targets two classes of asymmetric human-robot teams, namely re-

motely operated autonomous robots and manned vehicle with autonomous capabil-

ities. In both classes, the human and robot exhibit a supervisor-worker relationship

autonomous
control

manual
control
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Actuator

observation

action

M
U
X

World

Human

Agent

Figure 1–2: In a supervisor-worker team, the autonomous agent onboard the mobile
robot senses the state of the world (e.g. using a camera) and generates control
commands to the vehicle’s low-level actuator. Meanwhile, a human supervises the
robot’s task performance by observing its behaviors, and can also issue intervening
control signals to the robot’s actuator. A command multiplexer (MUX) ensures that
the supervisor’s interventions always supersede the agent’s commands.
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and interact following a supervisory control scheme [84], as illustrated in Figure 1–

2. under typical operations, the autonomous agent onboard the mobile robot as-

sumes responsibility for controlling the vehicle’s actuators, toward accomplishing

a given task. All this while, the human “supervisor” passively monitors the robot’s

actions to ensure that adequate task progression is made. In certain situations, the

human may also choose to intervene to assist or correct the robot agent, by taking

over manual control of the vehicle’s actuators for a period of time. We assume that

both the human and the robot agent are always working collaboratively toward a

set of common task goals.

The “agent” block depicts a generalized encapsulation of one or more au-

tonomous robot systems that ultimately send commands to the vehicle’s low-level

actuation controller. These elements can incorporate sensor-based perception units,

mapping, localization, and planning modules, machine learning policies, and/or

feedback control laws. Examples of such agents include a car autopilot that incor-

porates data from laser range-finder, camera, and other sensors to generate throttle,

brake, and steering commands [92], or an aircraft navigation unit that stipulates de-

sired vehicle velocity and pose to guide it along a set of Global Positioning System

(GPS) waypoints. These complex systems often have many configurable parame-

ters, and our research assumes that each robot agent’s parameters can be program-

matically updated to alter its behaviors dynamically, as a means for giving it new

trust-seeking capabilities.

The “actuator” block in Figure 1–2 is an abstraction for low-level controllers

that regulate the robot’s motors and actuators. We distinguish these components

from the “agent” block since vehicular controllers are typically provided by the

robot platform’s vendor and thus are often treated as black-box systems with pre-

dictable responses and which do not need end-user tuning. Furthermore, expressed
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in terms of the human’s trust toward the robot, we assume that the supervisor al-

ways has full confidence in the actuator block’s correctness of operations.

Our research focuses on human interventions that are specifically in the form

of control-level commands to the mobile robot’s actuators, as opposed to targets

at higher levels of abstraction such as waypoints or task goals. Thus, interactions

conforming to our definition of a supervisor-worker relationship can be classified

as a subclass of supervisory control that involves “continuous closed loop systems

with fast dynamics” [63]. Although limiting the communication modality to such

low-level control may appear overly restrictive and mundane, often humans are al-

ready familiarized with this form of interaction, as can be seen when the supervisor

takes over the steering wheel from a self-driving car agent. More importantly, the

availability of a continuous stream of input from the human will turn out to be a

vital precursor for the robot agent to sense and thus seek the human’s trust in real

time, as will be discussed in Chapter 5.

In this interaction context, several types of situations can cause humans to in-

tervene. For instance, the robot agent may sometimes fail to perform its duties to

the human’s level of satisfaction. In other circumstances, the supervisor may real-

ize that the agent has reached a limitation in its programming and thus require addi-

tional help to overcome challenging task conditions. As an example, an aerial drone

may struggle to navigate directly toward its GPS waypoint under strong headwind,

and so the human may decide to manually steer the vehicle in a snake-like trajec-

tory to make incremental progress toward the target. Another cause for intervention

arises when the supervisor wishes to change the agent’s current task objective by

demonstrating actions toward a different task target.

The multiplexer (MUX) block in the diagram is used to ensure that the supervi-

sor’s intervening commands will always supersede those of the autonomous agent.

As a corollary, we also assume that the robot will always execute the supervisor’s
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commands without questioning their validity. Consequently, our research focuses

solely on exploring the directed trust link from the human supervisor to the robot

agent, while studies of reciprocal trust and related concerns such as the safety of

the supervisor’s commands [81] are beyond the scope of this thesis.

Aside from interventions, the human may also wish to convey assessments

about the agent’s performance throughout operations. Concrete instances include

giving critiques such as praise or criticism to a recent action or event, and providing

feedback by verbalizing their current degree of trust in the agent. These communi-

cation modalities are seen in workplace settings as well, and they can help the team

establish a common understanding and synergize toward common task goals.

1.2.1 Collaborative Visual Navigation Tasks

Our investigations in this thesis are grounded on the task domain of collabo-

rative visual navigation. Despite this focus, we studied human-robot trust from a

platform-independent and application-agnostic manner, to accommodate supervisor-

worker teams in other task domains as well. With that said, all of our robot agents

are built upon a generalized vision-based boundary tracking framework (see Ap-

pendix A). To demonstrate the generalized nature of our solutions, we evaluated

these agents onboard multiple aerial and terrestrial platforms, and targeted both

terrain coverage as well as trajectory patrol tasks.

Visual navigation problems are natural research fits for human collaboration

and interaction, since we humans innately excel at many vision-based tasks. Also,

since cameras are among one of the most prevalent sensors in robots, using this

modality enables our trust-seeking robot agents to be deployed onboard a range of

different robot platforms. Furthermore, the necessary sophistication and complex-

ity in autonomous visual navigation solutions [60,71] can often lead to uncertainties

about its internal processes, and therefore naturally warrants the need for the human

supervisor to build trust in a robot agent.
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1.3 Research Methodology: Toward a Framework for Trust-Seeking Robots

There are multiple ways to imbue autonomous agents with trust-seeking ca-

pabilities in supervisor-worker teams. One strategy is to design and constrain the

types of interactions between the human supervisor and the robot agent as means

to encourage team-building and trust. For instance, adding visualizations of the

agent’s perceived view of the world, internal state, and output commands might

help the human better understand the agent’s reasoning process and take notice of

its capabilities and limitations. By baking such types of transparencies [56] into the

interface and interaction scheme at design time, the supervisor at deployment time

would be able to better identify which task instances are appropriate to delegate to

the robot and which conditions require manual assistance.
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Figure 1–3: Our trust-seeking robot framework enhances a plain supervisor-worker
team with trust modules serving diverse purposes. These modules update the
agent’s parameters to adapt to occasional human interventions, infer the supervi-
sor’s level of trust in the robot based on reactions and feedback, and help the robot
agent regain lost trust by altering its behaviors.

As shown in Figure 1–3, another family of approaches entails augmenting the

robot agent’s existing programming with new modules to generate behaviors dy-

namically that incite trust or mend trust losses. As a precursor to such trust-induced

behaviors, a robot must first be able to sense or infer the human’s degree of trust
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on a moment-to-moment basis. The agent can then alter its behaviors momentarily

when the supervisor’s inferred trust signal drops, for instance to engage the human

for assistance during challenging task conditions. The agent can also adapt its ac-

tions in a committal manner by learning from occasional human interventions to

improve task performance as well as build a trusting bond.

These online adaptation strategies make the robot agent react to the human’s

trust changes directly and explicitly. In contrast, the previously discussed design

principles such as interface transparency aim to enhance usability, situational aware-

ness, or other factors, which in turn are indirectly correlated to greater trust [80].

This thesis will investigate all of the approaches above toward developing

trust-seeking robots, including designing and analyzing trust-building interaction

schemes, modeling and inferring the human’s dynamic trust state, and developing

trust-induced robot behaviors. These will involve research efforts in the realms of

cognitive Human-Robot Interaction and Machine Learning. We will address several

key theoretical problems and technical challenges, including:

1. How to adapt an arbitrary existing robot agent to behave similarly to the hu-

man’s occasional intervening control commands, especially when task con-

ditions and goals change over time?

2. Which factors from the interaction experience influence the supervisor’s trust

dynamics, and what are the relative importances of the influences among

different factors?

3. How to infer changes to the human’s trust state online so that the robot agent

can then react to these changes promptly?

4. How to alter a mobile robot’s actions in a platform-agnostic way toward re-

gaining lost trust?
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1.4 Contributions

This thesis will present solutions to each of the problems listed above in turn,

namely:

1. Adaptation from Participation (AfP): a paradigm that encourages fluid in-

teractions and also calls for the robot agent to adapt to occasional intervening

commands from the supervisor, toward coping to changing task conditions as

well as encouraging the building of human-robot trust indirectly;

2. Trust factor analyses of typical interaction experiences for supervisor-worker

human-robot teams, with a particular emphasis on characterizing trust dy-

namics at diverse time scales;

3. Online Probabilistic Trust Inference Model (OPTIMo): a real-time, per-

sonalized trust model that captures dynamics at arbitrary time scales and also

attains superior prediction accuracies over existing methods;

4. Trust-Aware Conservative Controls (TACtiC): a control alteration strategy

for the general class of locomotive-centric robots that realizes the first-ever

instantiations of robot agents that react in direct response to salient trust

losses from their human supervisors.

We tailored the expositions on these interaction paradigms, empirical find-

ings, and software systems to appeal to various types of readers. For instance,

we elaborated on the iterative designs of several user studies and robot field tri-

als for collecting extensive empirical evidence to support our trust analyses. We

also demonstrated the application of Bayesian probability principles to capture and

unify influences from multiple sources of interaction signals into timely trust esti-

mates for the supervisor. Furthermore, we provided end-to-end technical details for

all of our trust-seeking robot agent implementations.

These developments have also led to the following auxiliary contributions:
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5. Boundary tracking agent: an autonomous visual navigation controller de-

sign, with instances deployed on aerial, terrestrial, and marine robots (in-

cluding all of the platforms depicted in Figure 1–1) to guide along arbitrary

boundaries of visually homogeneous terrains;

6. Adaptive Parameter EXploration (APEX): an online, anytime algorithm

for realizing the AfP paradigm with an arbitrary parametrized robot agent;

7. SightedTurtleSim: an open-source robot simulator [96] that is integrated

with the Robot Operating System (ROS) software ecosystem; this framework

simulates planar-locomotive robots such as aerial or underwater vehicles, and

synthesizes frames from their bird’s-eye view cameras using real satellite

imagery;

8. Four large-scale interaction studies that investigated human-robot trust and

quantitatively evaluated our trust-seeking robot agents, involving a total of

112 participants across 7 Canadian institutions with diverse backgrounds;

1.5 Statement of Originality

Parts of my research in this thesis have been published in peer-reviewed inter-

national conference venues [98–104,106]. Aside from my own research and devel-

opment efforts under the guidance of my supervisor Professor Gregory Dudek, sev-

eral colleagues have also made key contributions as well. Arnold Kalmbach assisted

in the developments and deployments of the APEX aerial coverage user study and

campus patrol field trials, which will be presented in Chapter 3. Professor David

Meger provided a ROS-based software interface for controlling the SL-Commander

vehicle, and both he and Qiwen Zhang assisted in the deployment of the APEX in-

teractive driving field demonstration, as will be discussed in Chapter 3. Professor

Joelle Pineau provided invaluable guidance in the research that evolved into OP-

TIMo’s Dynamic Bayesian Network formulation of a real-time human-robot trust

model, which will be elaborated on in Chapter 5.
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1.6 Outline

Chapter 2 elaborates on background material, including fundamental traits of

human trust, research on human-automation trust and human-robot trust, surveys

of trust elicitation and learning methods, and overviews of the robot platforms em-

ployed in our evaluations. This chapter also enumerates and justifies the key as-

sumptions used to form the foundations of our research.

All of the robot agents in this thesis are built upon a general-purpose bound-

ary tracking controller that we developed. Implementation details on this vision-

based robot navigation system are elaborated in Appendix A, in order to focus the

main thesis content on trust-related topics. The curious reader should also note

that this appendix describes and reflects upon an initial set of robot field evalua-

tions, which historically and personally motivated many of our human-robot trust

research thrusts in this thesis.
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Figure 1–4: Our main research contributions in this thesis entail multiple elements
within a supervisor-worker team enhanced with a trust-seeking agent. These mod-
ule also map to individual thesis chapters (magenta-shaded blocks).

As depicted in Figure 1–4, each of our four primary thesis contributions are

discussed in turn in separate chapters. Chapter 3 introduces the Adaptation from

Participation interaction paradigm and describes a corresponding module that adapts
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the boundary tracking agent’s behaviors dynamically. This scheme allows the agent

to imitate intermittent steering signal from the supervisor as an implicit means to

seek trust. In contrast, Chapter 4 sows the seeds in a three-stage explicit trust-

seeking research thrust that starts with a set of interaction studies of typical in-

teraction experiences and trust evolutions for supervisor-worker teams. Chapter 5

uses key insights from these interaction studies to synthesize a personalized and

real-time trust inference engine. Armed with this engine, Chapter 6 describes a

strategy for our robot agent to react to the supervisor’s inferred trust state, toward

remedying situations where the human lost trust and maintaining healthy collabora-

tion. Finally, Chapter 7 discusses consequences of our contributions and highlights

follow-up research topics.
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Chapter 2
Background

The first half of this chapter begins by elaborating on the characteristics of our

supervisor-worker team structure and discussing related interaction contexts within

the fields of Human-Robot Interaction and Human-Automation Interaction. We

next present an overview of the vast literature on the human notion of trust and

also highlight existing trust research in human-robot interaction literature. In par-

ticular, this exposition on trust will highlight dominant attributes that are pertinent

specifically to supervisor-worker human-robot teams. Next, we survey existing ap-

proaches for developing robot systems that seek to establish trusting relationships

with their human collaborators. Following these discussions, we summarize the

various fundamental assumptions regarding trust and supervisor-worker teams em-

ployed by our research.

The second half of the chapter focuses on more practical topics. In particular,

we survey related research on autonomous robot systems for vision-based naviga-

tion tasks similar to the concrete implementations of our trust-seeking agents. We

also elaborate on the diverse mobile robot platforms used to empirically evaluate

our research efforts toward realizing efficient trust-seeking robots.

2.1 Characterization of Asymmetric Human-Robot Teams

Among the oldest modes of interaction between human operators and robots

(or more generally, automation software) is “teleoperation” or “manual control” [84].

In these systems,the human uses a controller to send signals to the robot’s actuators
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while data from its sensors are visualized via a display. In contrast, modern human-

automation configurations include a software “agent” that interacts with available

sensors and actuators independent of the human’s control signal.

One way to characterize types of interaction with these agents is by specifying

their “level of autonomy” (LOA), which reflects how much independent responsi-

bilities are given to the agent. For instance, Sheridan and Verplank’s LOA scale [85]

contrasts agents that recommend actions to the operator to execute, from those that

can execute actions on their own and inform the operator, to those that act under full

autonomy while ignoring the human. Goodrich and Shultz proposed another LOA

scale with an explicit emphasis on human interaction [38]. As shown in Figure 2–1,

their classification distinguishes teleoperated systems with little or no mediation by

the agent, from relationships where the human supervises and occasionally inter-

venes in the autonomous agent’s operations, and from teams where the human and

robot act independently and jointly toward a common set of task goals.

direct control                                                                                                       dynamic autonomy

Figure 2–1: Goodrich and Shultz’s classification of levels of autonomy with em-
phasis on human interaction (replicated from [38]).

The supervisor-worker relationship that our research focuses on falls under the

classification of “supervisory control”. Nevertheless, this term has been defined in

very broad terms, for instance referring to “one or more human operators [that]

are intermittently programming and continually receiving information from a com-

puter that itself closes an autonomous control loop [...]” [84]. Due to its broadness,

researchers have applied this term to refer to many types of interaction schemes.
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Endsley and Kaber proposed a distinction between “shared control” from “supervi-

sory control” [30]: in the former case, both the human and computer agent bear re-

sponsibility of generating and implementing actions toward accomplishing a given

task. On the other hand, in the latter context these duties are delegated to the agent,

while the operator occasionally intervenes by selecting alternative actions. Yanco

and Drury also described a supervisory role as one in which the human “needs to

monitor the behavior of a robot, but does not need to directly control it” [109].

Another limitation of the broad definition of supervisory control is that it does

not prescribe the level of abstraction for the commands issued by the human to the

autonomous agent. To illustrate this, consider distinct schemes in which a human

remotely supervises an aerial drone: for instance, the operator could stipulate a

mission-level end-goal such as reaching a final destination or carry out aerial cov-

erage of a designated region [105]. Alternatively, the human could specify a set of

task-level actions such as GPS waypoints for the robot agent to follow [20]. In a

third instance, the supervisor could enact control-level interventions by teleoperat-

ing the vehicle [99].

In this thesis, we define the “supervisor-worker team” as a supervisory control

context where human interventions take on the form of control-level commands.

This interaction context can also be (less succinctly) characterized as “continuous

closed loop systems with fast dynamics” [63]. We specifically targeted this level of

interaction as it can be related to rapid fluctuations in the human’s trust state, as we

shall elaborate in Chapter 5. Therefore, this type of continuous interaction signal

provides a vital opportunity for estimating trust in real time, which subsequently

enables robot agents to promptly react to changes in their supervisors’ trust state.

The interactions within a supervisor-worker team are also related to the con-

cept of “sliding autonomy”, or equivalently, “shared autonomy”. Sliding autonomy
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refers to the ability of an autonomous agent to share control over the robot’s ac-

tuators with another individual such as a human or robot partner. Brookshire [9]

showed that a human-robot team using sliding autonomy can achieve better task

performance compared to either a purely teleoperated system or a fully autonomous

robot. Dias et al. [25] similarly found that enabling sliding autonomy within a

peer-to-peer human-robot team led to an improvement in task completion times

and reduced number of mistakes. Dragan and Srinivasa [27] established a unifying

formalism of policy blending for sliding autonomy systems, where action policies

from a human expert and a planning algorithm are combined to produce optimal be-

haviors. Using policy blending, the authors developed a robot manipulator planner

that generates trajectories by estimating the intent of human-demonstrated motions.

The systems cited above shared “control-level” autonomy over the robot’s ac-

tuators just as in supervisor-worker teams. Other sliding autonomy instantiations

have generalized this binary control authority state to multiple levels of auton-

omy [20, 23]. A closely related concept is that of “mixed-initiative control”, which

also encourages the sharing of autonomy, but places further emphasis on whether

the human or the robot agent initiates control [11]. In the above systems, the human

and/or the agent are given the ability to toggle between different levels of command

abstractions dynamically, for instance switching from control-level interventions to

task-level commands when tackling simple task conditions. Generalized sliding au-

tonomy instances represent rich and powerful interaction schemes with the capacity

to optimize the moment-to-moment control allocation strategy. Nevertheless, relat-

ing commands at higher levels of abstraction to the supervisor’s dynamic trust state

is beyond the scope of our research.

Two other attributes of human-robot interactions that are important to our trust

research entail the human-robot spatial relationship (i.e. co-located or remote) and

task criticality (i.e. whether failures affect the human’s physical safety) [109]. As
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Chapter 6 will discuss, we observed notably different trust responses and behav-

iors from supervisors between a user study with a remotely operated aerial vehicle,

versus a field trial with an autonomous car transporting the human within.

2.2 Trust

Trust is a highly rich human phenomenon that brings forth myriad interpre-

tations, constructs, and cognitive as well as emotional responses [62]. These el-

ements of trust have been analyzed from many perspectives, such as societal and

political views [42], workplace and management aspects [17], as well as for per-

sonal relationships [52]. Others have also studied characteristics of an individ-

ual’s trust within online commerce setting [111], trust toward general information

technologies [16, 55], as well as trust toward robots and software automation sys-

tems [41, 57]. Given this vast diversity of disciplines studying trust, different pro-

posed theories often have unique aspects that are pertinent to their specific contexts,

and may even be at odds with alternative formulations. In this section, we provide

a brief overview of the main attributes of trust that are commonly applicable across

diverse human contexts, before focusing on human-robot relationships.

2.2.1 Fundamentals of Human Trust

One of the most important points of distinction lies in the two separate roles

of trust, as either a utility mapping or an end-state of the human decision process:

• The degree of trust is a quantifiable assessment toward another individual,

• whereas the act of trust reflects the decision and behavior of relying on an

individual’s abilities or services.

Both notions are instantiated for a given point in time, and we use the term

“trust state” to denote the degree of trust at a particular time instant. Also, both the

degree of trust and the act of trust can be related to a specific goal, be it a desire,

need, task, or objective [31]. The specificity of trust toward concrete goals is of

particular importance when reasoning about trust in robots, since typically these
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systems are built to accomplish a specific set of tasks. For instance, the notion of

placing trust in a vacuum cleaning robot usually implies the task of sweeping the

floor. Furthermore, one would generally not share the same degree or act of trust

for a different goal. Continuing along our example, we would not likely trust the

same vacuuming robot to open doors and greet guests.

The degree of trust measures the amount of a truster’s assessment of a trustee’s

abilities. This measure can be affected in two ways: through direct experiences or

via delegation. In the former case, the truster builds confidence by interacting with

the trustee and evaluating the quality of this direct engagement. In the latter case,

trust delegation [13] refers to the use of assessments from a third-party “witness” to

assess a trustee indirectly. When adopting the witness’s recommendations toward

the trustee, the truster must further account for his personal assessments of the

witness’ reliability.

Both types of trust updates can be seen as discrete transactions over one’s

historical experiences. Consequently, these updates can be accumulated over the

interaction history to characterize the truster’s prior degree of trust for a given

event. These trust states can be further influenced by personality factors that are

not driven by utility-theoretic means, such as society-induced predisposition, or

personal faith [62].

Table 2–1: Classifications for the basis of trust toward different trustee types.

Human Information Artificial Automation
Employee [17] Technology [16] Agent [31] System [57]

performance- results competence
ability performance

centric capabilities predictability
intention- intent positive intentions

willingness
process

centric integrity ethics purpose

Another prominent topic studied in social sciences is the characterization for

the basis of trust. Table 2–1 highlights several proposed categorizations of these

bases, while a more exhaustive survey can be found in [57]. When dealing with
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a non-human, software-based trustee, applicable bases can be categorized into two

broad dimensions: typically, one’s trust toward a robot agent or automated tool is

based on constructs related to task performance, such as their accuracy and con-

sistency in carrying out an assigned task. These concepts are in stark contrast to

factors associated with the trustee’s intentions, which pertain to the software sys-

tem’s general integrity and benevolence toward performing an assigned task.

The trust state is a personal attribute of the truster, and therefore only she will

have mental access to the actual trust state. Although the truster can introspect

and express this cognitive state, these assessments are subject to potential biases

and noise resulting from the human decision process and caused by answer for-

mats in questionnaires [15]. Nevertheless, the trustee can maintain an inferred trust

state by either accepting the reported trust feedback or by combining these with

observations of the truster’s actions. In Chapter 5, we will demonstrate a concrete

instantiation of this trust inference process based on diverse interaction factors that

accounts for several forms of noise and biases in their values.

Due to personality-based factors, trusters may form differing opinions about

the trustee after experiencing the same sequence of interactions. By eliminating

these truster-dependent variations, what remains is arguably an objective assess-

ment of the trustworthiness based purely on the trustee’s demonstrated performance

and interaction experiences. Some of the proposed models for human-robot trust

(e.g. [34, 40, 56]) adhere to this causal attribution approach [50].

2.2.2 Trust Assessment Toward Robots

Studies of trust in Human-Robot Interaction (HRI) historically evolved out of

a multi-decade literature investigating interactions with automation systems and in-

formation technology. Nevertheless, engaging a physically-embodied robot agent

is significantly richer than dealing with an online commerce agent or a piece of au-

tomation [109]. Many of these robots operate in dynamic and noisy environments
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that impose significant difficulties on localizing their positions and assessing their

task performance. Such noise, including poor visibility, unexpected obstacles, and

intermittent communications, are typically not present in the structured environ-

ments of software systems, such as a grammar checker or an email spam filter.

Another crucial distinction is that robots have the potential of inflicting phys-

ical damage to tangible objects and the real-world environment. Consequently,

human operators tend to behave differently given that they may be blamed for these

physical damages, or worse yet if there is a high likelihood that they may be injured.

A common motivation for studying trust toward automation and robots is ul-

timately to devise techniques for detecting, preventing, and mitigating instances of

distrust (i.e. lack of trust) or mistrust (i.e. excessive trust) toward these systems. In

extreme cases, such mis-calibrations of the degree of trust in automation have led to

fatal accidents, for example in train derailments where the automated alert systems

were disabled due to prior false alerts [69].

Many research groups have quantified how a human operator’s trust toward

a robot can be affected by a wide range of factors, including task performance

and errors [21, 29, 36], the nature of these failures [7, 26, 79], the human’s self-

confidence [56], the operator’s mental load [29], and the control allocation strat-

egy [34, 36]. Hancock et al. [41] carried out a meta-analysis of empirical results

from these and other HRI trust studies to establish quantitative estimates of various

factors influencing trust across different interaction domains.

The vast majority of human-robot trust research, including those above, are

concerned with “performance-centric” attributes of trust. Arkin et al. [4] ventured

into the seldom-explored realm of “intention-centric” trust bases by proposing a

framework for robot agents to act deceptively via false communication. The authors

suggested potential utilities in military contexts as well as health-care robotics (e.g.
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deceiving an Alzheimer’s patient to administer treatment), although current work

has been limited to theoretical contributions only.

Our investigations into human-robot trust in this thesis are closely related to

the work by Desai et al. [23, 108], who carried out a multitude of investigations on

trust within an urban search-and-rescue setting. The authors quantified the effects

on trust from many interaction factors, including the level of autonomy, the reliabil-

ity of the robot agent, and the situational awareness afforded by the user interface.

These efforts culminated in a set of trust-sensible design guidelines for robot agents

and interfaces, as well as a comprehensive Human and Autonomous Remote Robot

Teleoperation (HARRT) model that relates myriad interaction factors to a trust as-

sessment scale [64]. The authors acknowledged that this regression-based model

has limited capability in predicting the human’s trust state dynamically, and have

also expressed desires to expand efforts toward real-time trust modeling and trust-

calibrating agent behavior modifications. Our research has realized both of these

capacities, as will be demonstrated by the online trust inference engine in Chapter 5

and the trust-induced control alteration strategy in Chapter 6.

Finally, several studies (e.g. [24,41,56]) have highlighted the influences on the

degree of a human’s trust in a robot originating from diverse factors, such as:

• the human’s demographic attributes: e.g. age, gender, occupation;

• the human’s attitudes and experiences: e.g. propensity to trust robots, prior

experience with robots and with task setting;

• the human’s perception of robot attributes: e.g. adaptability, benevolence;

• the robot’s task performance: e.g. amount of algorithmic failures, frequency

of task errors, types of errors;

• attributes of the interaction setting: e.g. communication quality, task com-

plexity.
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2.2.3 Computational Models of Human-Robot Trust

Diverse representations have been proposed to quantify the degree of trust in a

robot agent or a software automation system. In their survey on human-automation

trust [63], Moray and Inagaki identified five classes of models:

1. regression using trust factors at a fixed time instant;

2. time series modeling of trust dynamics;

3. qualitative relationships among trust factors;

4. rule-based representation of the decision-making process;

5. neural network modeling attempts based purely on evidence maximization.

Proposed model representations include binary [40] and continuous [34, 56]

measures that characterize the robot’s trustworthiness caused by its performance,

as well as ordinal scales [47, 64, 68, 82, 107] used to elicit evidence of a person’s

actual amount of trust. Each representation has its own merits and drawbacks, and

there is no “true” model since trust is intrinsically a non-observable construct.

Uncertainty plays a major role in characterizing trust towards robots, as au-

tomation researchers have agreed that trust enables collaboration with complex and

hard-to-predict agents [40]. Otherwise, lingering uncertainties about the robot’s be-

haviors and intentions would require immense effort in rational reasoning based on

extensive direct experiences alone [13].

A common theme among several trust models is the distinction between mis-

trust and uncertainty, i.e. knowing with full certainty that an agent will perform

poorly is different from inferring that the agent may sometimes misbehave. De-

pending on the application and context, trust can be modeled against mistrust [51],

against uncertainty [31, 40], or against both [49].

24



Many of the studies above described the human’s degree of trust toward the

robot through correlations with past interaction experiences and subjective assess-

ments, although few are capable of predicting a human’s trust state during oper-

ations. Lee and Moray presented a temporal model for relating trust assessments

to task performance in a human-automation context, using an Auto-Regressive and

Moving Average Value regression approach (ARMAV) [56]. Desai and Yanco [23]

conducted a series of robotic search and rescue experiments during which users

were asked to report at regular intervals whether their trust state has increased, de-

creased, or remained unchanged. These signals were quantified as {+1,−1, 0} and

integrated over time to obtain the Area Under Trust Curve (AUTC) measure. Our

research has produced two temporal trust models (see Section 4.2.5 and Chapter 5)

using similar approaches. Notably, Section 5.4 will present a quantitative perfor-

mance comparison of all these models.

2.3 Trust Elicitation in Human-Robot Teams

There are two existing classes of techniques for improving the degree of trust

and encourage the act of trust in human-robot teams. One class consists of configur-

ing the interaction scheme with the robot agent at design time, following established

principles, to facilitate teamwork and mitigate trust-impeding pitfalls. There is also

a large corpus of research on robot agents that can learn from their human collabo-

rator as well as provide feedback at deployment time, so as to actively improve task

performance and elicit greater trust from the human.

2.3.1 Interaction Design

Goodrich and Olsen [37] proposed seven general principles for designing ef-

ficient interactions and interfaces for remotely-operated robots. Concrete recom-

mendations include switching between control schemes seamlessly, using natural

cues in input and display elements, allowing the human to manipulate interface and
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control components naturally, externalizing memory by fusing and displaying his-

torical information, and guiding human attention using visual and audio interface

cues. Despite being common sense, all of these recommendations are vital toward

enhancing usability and mitigating frustrations.

Desai et al. [23, 108] derived a set of observations and guidelines toward im-

proving system performance based on an extensive series of interaction studies with

teleoperated search-and-rescue tasks. General themes among recommendations in-

clude coping with limited situational awareness, providing selective feedback, re-

ducing task difficulty, factoring long-term interaction effects, enforcing stable and

high agent reliability during initial interactions, and accommodating the target au-

dience explicitly during interface design. These guidelines are applicable across a

wide range of human-robot teams, and all contribute to enhanced team efficiency

and greater trust.

A common finding among multiple studies showed that trust in robots and

automation can be improved by providing the human user with transparent expla-

nations of the agent’s decision-making process [56]. Dzindolet et al. empirically

substantiated this principle for a visual target detection task, and showed that users

trusted an automated visual aid more after being explained about its limitations

(i.e. sometimes it would falsely recognize tree shadows as humans due to simi-

lar shapes) [29]. Within a peer-based collaborative search domain, Sanders et al.

found that users expressed greater trust toward robot agents that communicated us-

ing rich modalities (e.g. graphics over audio over text) and that provided constant

and verbose feedback [80]. Despite these promising findings, the authors admitted

that the results were marginally significant and expressed the need for larger-sized

experimentation.
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2.3.2 Interactive Feedback and Learning

Continuing with the theme of transparency in the agent’s decision process,

Wang et al. [94] proposed a method to automatically generate explanations of a

robot’s task-level actions by semantically translating the state and output of its

probabilistic planner. After carrying out an online study with simulated military

search tasks, the authors found that users expressed greater trust when the robot

agent provided text descriptions of the rationales and associated confidence levels

to explain its actions. This work demonstrated great potential in the use of dynamic

feedback from the robot agent to improve transparency and trust, although it would

benefit from further investigations, such as real-world deployment results and and

long-term side-effects of repeated communications. In Chapter 6, we propose a

control alteration strategy for the robot agent that similarly conveys hesitation to-

ward seeking to build trust. Also, contrary to operating with discrete semantic task

choices (e.g. “search the restaurant down the street”), our technique generalizes to

continuous control-level actions.

The topic of Learning from Demonstration (LfD) [2] addresses the transfer

of task-domain knowledge from (typically human) experts to robot learners. LfD

is related to several other learning problems with equivalent or similar formula-

tions, including Robot Programming by Demonstration (PbD) [6], imitation learn-

ing [1,73], Inverse Reinforcement Learning [65], and Apprenticeship Learning [1].

These learning agents naturally incite greater trust from their human teachers upon

successfully learning and imitating their demonstrated actions.

Nicolescu and Matarić presented a LfD technique where a robot learns to com-

plete a given task by observing changes in the world state caused by a demonstra-

tor [66]. This indirect learning approach has the added benefit of allowing a robot
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student to learn from either a human or robot teacher. Abbeel and Ng presented a so-

lution to imitation learning using the framework of Markov Decision Process with-

out Rewards (MDP\R), and demonstrated the ability for a robot to acquire complex

behaviors such as highway driving by observing humans [1]. Chernova developed

a similar LfD framework in which a robot, initially with no autonomous capabil-

ities, learned new behaviors by incorporating demonstrated state-action pairs into

its policy [14]. A unique aspect of this work was that the robot could request a

demonstration when the action recommended by its policy had an insufficient self-

confidence value. Ross proposed the Data Aggregation (DAgger) framework to

solve imitation learning tasks in an efficient manner, by selectively adding human

demonstrations only in situations where the agent’s current policy failed to perform

adequately [77]. Knox developed the framework of “Training an Agent Manually

via Evaluative Reinforcement”, or TAMER, that incorporated positive and negative

critique values from a human observer into a reinforcement learning formulation to

interactively shape a robot agent’s behaviors over time [53].

Similar to our Adaptation from Participation (AfP) paradigm in Chapter 3,

Dogged Learning is a related interaction scheme that combined concepts from LfD

and sliding autonomy [39]. This technique instantiated a robot agent using an on-

line LfD formulation, and then arbitrated between commands produced from this

agent, from the human demonstrator, and optionally from a reactive controller via

a common measure of confidence. The authors demonstrated empirical results for

a degenerate variant of this novel arbitration process, where human interventions

were always assigned as full confidence.
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2.4 Foundations of Trust-Seeking Robots

We now highlight the core assumptions regarding trust and supervisor-worker

teams made in our research. These assumptions help to define and delineate trust-

related concepts both for our problem formalisms as well as for participants in our

interaction studies.

2.4.1 Characteristics of Supervisor-Worker Teams

Our supervisor-worker team definition in Section 1.2 assumes the following:

1. Goal-oriented purpose: both the robot agent and the human supervisor are

working toward a single and shared set of task goals;

2. Agent/actuator separation: the robot’s high-level sensing, planning, and con-

trol modules are decoupled with its low-level actuator interface, and their in-

termediary channel consist of state-change commands specified with respect

to either the robot’s local frame or a fixed world frame;

3. Parametrized agent: the autonomous agent onboard the robot has various

(discrete and continuous) configuration parameters, which can be altered dur-

ing operations to change its behaviors;

4. Human control authority: all intervening commands from the human are ex-

ecuted by the robot’s actuator block and thus override the control signals

generated by its autonomous agent;

5. Asymmetric relationship: all software onboard the robot accepts the human’s

feedback and carries out the human’s commands without questioning their

legitimacy or safety;

6. Supervisor attentiveness: the human supervisor is assumed to be actively

engaged in the team and continuously attentive to the robot agent’s actions

and its task progress.
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2.4.2 Representation of Human-Robot Trust State

Our research adheres to a “performance-centric” definition of trust and as-

sumes that the robot agent always maintains good intentions and is never decep-

tive. This trust definition is shared by numerous other systems and studies in the

human-automation and human-robot interaction literature (e.g. [23,64,107]). Also,

in a supervisor-worker team, the human and the robot agent are working together

toward a common set of task goals. Therefore, this setup limits the utility of decep-

tion due to the lack of different task objectives or utility functions. Furthermore, by

focusing solely on performance-centric bases, we can factor out the vast number of

intention-centric trust factors and concentrate the scope of our empirical studies on

trust dynamics in Chapter 4.

Another attribute of trust follows from our assumptions that the robot agent is

always motivated and also always yields to the human’s commands without ques-

tion. Consequently, we assume that these robot agents always have absolute and

full trust in their supervisor’s capabilities. This assumption enables our research to

focus solely on the unidirectional trust characterization and quantification from the

human supervisor to the robot agent, without worrying about reciprocal aspects.

We chose to represent the human’s trust state t as a continuous value over

an closed interval, i.e. t ∈ [0, 1]. This continuous representation captures the

magnitude of change in the trust state, which is useful for designing trust-induced

agent behaviors that are sensitive only to salient trust changes. The topic of salient

trust-induced behavior alterations will be discussed further in Chapter 6. Another

benefit of this representation is the ability to apply continuous-state regression and

inference techniques for estimating the supervisor’s trust state. Our probabilistic

trust model in Chapter 5 places a belief over this interval scale, which allows it to

distinguish between distrust (i.e. low mean value) versus uncertainty (i.e. large

variance). Furthermore, having a bounded trust space is helpful in practice when
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prompting users to report their trust state during a questionnaire, and facilitates

comparisons between trust feedback from different users. Our methodology for

trust elicitation will be discussed in Chapter 4.

2.4.3 Development of Trust-Seeking Behaviors

Our realizations of trust-seeking robot agents incorporate many established

trust-eliciting design principles [23, 37]. Given their importance and relevance,

we consider these design-time elements as standard and mandatory features that

should be implemented on all robot agents. In contrast, the main thrust of this thesis

revolves around deployment-time approaches for the robot agent to elicit trust by

changing its behaviors dynamically.

An important point of distinction among such behavior changes is that some

are merely temporarily altered in reaction to certain interaction events, while other

changes are adapted in a committal and permanent manner akin to the accumu-

lation of knowledge. Chapter 3 will propose a computational method for a robot

agent to learn from its human supervisor’s occasional intervening commands and

adapt its behaviors in a committal way. This formulation assumes that by success-

fully imitating the supervisor’s actions, the agent will indirectly gain the human’s

trust over time. Separately, Chapter 6 will present a trust-induced reaction strategy

that momentarily alters the robot’s behaviors, to mitigate impacts of recent trust

loss as well as signal the supervisor for help.

2.5 Autonomous Visual Navigation

Our research on human-robot trust is carried out through the use of an au-

tonomous agent for tracking visual terrain boundaries. This visual navigation agent

draws inspiration from the literature on automated road-following robot controllers.

Pomerleau [71] investigated the use of Artificial Neural Networks along with an

appearance-based approach toward autonomous visual driving. This work contrasts

with approaches using supervised and unsupervised probabilistic models proposed
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by Crisman and Thorpe [19], which was also deployed on Carnegie Mellon’s vehi-

cles to detect and track roads. Ma et al. [60] proposed a system for tracking curve

dynamics in noisy images of roads using an Extended Kalman Filter. Aufrère et

al. [5] presented a probabilistic model for detecting and tracking lanes on paved

roadways within noisy camera frames and demonstrated its implementation within

a real-time road recognition system.

As both research and commercial motor vehicles are being equipped with ever

more intelligent autopilots [12, 58, 92], there has been an emergence of recent re-

search interests on the problem of predicting driver behaviors and incorporating

them into the vehicle’s control and planning systems. Shia et al. developed a semi-

autonomous controller that can infer the driver’s attentiveness and distraction levels,

predict their actions, and intervene when the vehicle is deemed unsafe [86]. Jain et

al. presented an Advanced Driver Assistance System (ADAS) that fused various in-

formation from the driver’s perceived state and the car’s surroundings and warned

users of potential imminent danger [46]. The authors conducted extensive assess-

ments on freeway and city driving datasets and demonstrated that their system could

accurately anticipate maneuvers up to 3.5 seconds before they occurred. Sadigh et

al. formalized a dynamical system for a human-driven car that jointly modeled the

behaviors of both the autonomous and human agents [78]. This model was also

incorporated within a planner that accounted for the actions of the robot affecting

those of the human and vice-versa, which was validated using a simulated setup.

2.6 Robot Platforms

Our research places great emphasis on deploying and evaluating the proposed

trust-seeking robot agents in challenging real-world conditions and onboard diverse

types of mobile robot platforms. This section discusses the main vehicles used in

our quantitative interaction studies and field trials.
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To facilitate re-use of the algorithms and systems developed in this thesis, we

employed the open-sourced Robot Operating System (ROS) [72] to establish a com-

mon abstraction layer. ROS marshals content and requests in standard language-

agnostic data formats between our software modules, as well as with sensor and

low-level control drivers for our different robot platforms. This software ecosystem

also boasts an abundance of community-supported tools for logging, diagnosing,

and post-processing all of the inter-process communicated content.

2.6.1 Unicorn Fixed-Wing Aerial Vehicle

The Unicorn is a rigid-body fixed-wing plane manufactured by Lockheed Mar-

tin Procerus Technologies [90]. As seen in Figure 2–2, this Unmanned Aerial Ve-

hicle (UAV) has a 1 m wingspan built using expanded polypropylene foam, which

efficiently absorbs impact upon landing. An electric motor powered by a pair of 3-

cell lithium polymer batteries drives this vehicle at average ground speeds of 14 m/s

and for durations up to 30 minutes.

Figure 2–2: The Unicorn
is a commercial fixed-wing
Unmanned Aerial Vehicle
with an on-board autopi-
lot microprocessor and
gimbal-mounted camera.

The plane’s heading and flight dynamics are regulated by an embedded au-

topilot unit. This vehicle is equipped with numerous sensors, including a 3-axis

accelerometer, a pressure sensor, a magnetometer, and a GPS unit. Communica-

tion between the autopilot and the ground control software is achieved via radio

frequency. An on-board camera transmits live analog video stream at 30 frames

per second via a separate radio frequency. This camera is attached to a gimbal,
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which can be actuated via software through the ground control application. The

Unicorn can operate in several modes ranging from purely manual control to fully

autonomous waypoint-based navigation.

2.6.2 SightedTurtleSim Aerial Vehicle Simulator

Figure 2–3: SightedTurtleSim is an in-house framework for simulating planar-
controlled aerial robots with downwards-facing cameras. The environment map
can be set to any high-resolution satellite footage or other imagery. Each robot
(turtle icons) is shown along with its camera swath (as colored dashed rectangles).

SightedTurtleSim is an open-source ROS framework for simulating holonomic

aerial robots and synthesizing frames from their downward-facing cameras [96].

We created this tool to enable our research in this thesis by side-stepping robot

deployment challenges such as limited battery and operating range, varied wind

and lighting conditions, prohibitive deployment sites, and persistent safety con-

cerns. SightedTurtleSim simulates aerial vehicles as idealized point robots with ei-

ther fixed linear velocities or throttle and brake input commands to a second-order

plant. For simplicity however, angular velocities are confined to constant-altitude
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planar motions only. These robots can further be teleported to arbitrary positions

and orientations within a bounded environment.

As shown in Figure 2–3, the graphical front-end depicts a map of the environ-

ment, icons for all spawned robots, as well as each of their camera swaths. The

user can load any image file as the map, and we typically load high-resolution

satellite images to produce realistic scenes from the simulated robots’ cameras. All

functionalities above can be procedurally triggered via standard ROS messages and

service calls, or alternatively enacted through the graphical user interface. Each

robot’s locomotive and camera settings are specified at spawn time.

2.6.3 Husky Terrestrial Platform

Figure 2–4: The Husky
is a commercially-
available wheeled robot
for outdoor research.
This robot is equipped
with assorted sensors,
including a GPS re-
ceiver, an IMU, a laser
range-finder, and a
camera with adjustable
pitch and roll.

The Husky Unmanned Ground Vehicle (UGV) [76], illustrated in Figure 2–4,

is a wheeled platform commercially available from Clearpath Robotics, designed

for terrestrial robotics research in outdoor environments. Powered by lead-acid bat-

teries, this vehicle has a typical operating duration of 3 hours, while achieving a

maximum speed of 1.0 m/s. Its onboard computer processes and advertises teleme-

try and low-level control channels through standard ROS interfaces.
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This vehicle also serves as a flexible base platform that can house a wide va-

riety of sensors and actuators, including cameras, LIDARs, GPS, and manipula-

tors. Our visual navigation robot agents in this thesis processed frames from a

network-connected front-facing camera with adjustable pose and chest-level posi-

tioning. This sensor is capable of streaming compression video at 30 frames per

second under SVGA resolution (800× 600 pixels).

2.6.4 SL-Commander All-Terrain Vehicle

The SL-Commander, as seen in Figure 2–5, is an electric All-Terrain Vehicle

(ATV) jointly developed by MacDonald Dettwiler and Associates (MDA), Bom-

bardier Recreational Products (BRP), and Quanser Consulting [67], for the Cana-

dian Space Agency’s planetary research efforts. Its base platform is an electric

side-by-side ATV produced by BRP [10], with the capability to traverse terrain

ranging from paved roads to undulating back-country trails. The SL-Commander

utilizes Ackerman steering and a four-wheel drive with selectable locking differ-

entials, independent suspension, rugged construction and a high-torque propulsion

system based around a 48V electric AC induction motor. This vehicle has been

designed for a comfortable ride on rough terrain and has many passenger safety

features, including a steel roll cage, front and rear ventilated disc brakes, and both

on-board and remote kill switches.

A drive-by-wire system onboard the vehicle replicates many of the operations

typically conducted by a human driver during manual control, including actuation

of the throttle pedal and the steering wheel. Telemetry information, such as wheel

odometry, speed, and battery charge, are interfaced via a Controller Area Network

(CAN) Bus with an onboard Drive Computer. The Drive Computer is responsible

for managing real-time low-level tasks such as steering control, and is also con-

nected to another Smart Computer, which exposes a high-level control interface via

the Joint Architecture for Unmanned Systems (JAUS) SAE AS-4 standard [45]. In

36



Figure 2–5: The SL-Commander ATV is a custom research platform featuring a
programmable drive-by-wire control interface and houses many sensors including
cameras, a laser range-finder, a GPS unit, and an IMU.

the autonomous control mode, both the steering wheel and throttle pedal are locked

from human input, although the driver can nevertheless enforce safe operations at

all times via permanent control over the brake pedal and the kill switches.

The SL-Commander is equipped with an impressive slew of sensors, includ-

ing an industrial-grade laser range-finder, high-precision differential GPS and IMU

devices, a high-definition camera with 18x optical zoom mounted on a pan-tilt unit,

and two stereo cameras, and individual wheel cameras.

Along with my colleagues Professor David Meger and Qiwen Zhang, we de-

veloped wrapper modules for the SL-Commander’s sensor and control interfaces to

integrate within ROS. These efforts facilitated the integration of our autonomous

controllers with many community-contributed tools. Time-stamped data frames

from the vehicle’s cameras and laser range-finder were published using standard

ROS message formats and accompanied by meta-data on sensor characteristics.

Throttle and turn rate commands were processed by a custom ROS node that inter-

faced with the Drive Computer’s API. We further modified an existing ROS module

to read and control the state of the frontal camera’s pan-tilt unit.
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Chapter 3
Adaptation from Participation

Our definition of a supervisor-worker human-robot team calls for the human

to help out the autonomous robot via occasional control interventions. Such teams

have the potential to tackle challenging tasks, since they combine the heightened

dexterity and comprehensive planning capabilities of autonomous agents along with

keen instincts and creative problem-solving skills that are innate to humans.

Nevertheless, incorporating a shared control scheme alone does not address

some common issues in robot field deployments. For instance, configuring the au-

tonomous agent’s parameters to optimize performance for a given task instance

requires laborious data collection and expert knowledge of the agent’s internal

workings. Moreover, it can often be mentally straining for the operator to fine-

tune parameter settings during deployment, while juggling between task supervi-

sion and safety monitoring duties. Yet another class of concerns not addressed

by shared control is the need to handle various types of dynamic events that af-

fect the moment-to-moment task performance. Examples include pre-determined

as well as reactionary task switches, changes in the supervisor’s task intent or pref-

erence, varying environmental conditions, and unexpected external perturbations to

the robot’s sensors and actuators.

To address all of the challenges above, we propose to augment shared con-

trol by enabling the agent to adapt its behaviors interactively, into a paradigm that
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we coin as “Adaptation from Participation” (AfP). AfP encourages the human su-

pervisor to focus solely on participating in the team, and without having to worry

about configuring or adjusting the agent’s parameters directly. More importantly,

the robot agent learns from the human’s intermittent control signal and adapts its

parameter settings and behaviors in response, so as to improve task performance on

its own and reduce repeated interventions.

This interaction paradigm allows the robot agent to seek for greater trust indi-

rectly by imitating the human’s actions to adopt a common task intent and prefer-

ence. Behavior adaptation also helps to reduce the likelihood of repeating misbe-

haviors, thus preventing redundant interventions and the tendency for the supervisor

to degenerate into pure teleoperation. We hypothesize that AfP improves the overall

efficiency of supervisor-worker human-robot teams, by striving to achieve superior

task performance, reduced active human workload, and greater user satisfaction.

This chapter begins by formulating the computational problem of realizing

interactive adaptation for parametrized robot agents. We next propose the Adap-

tive Parameter EXploration (APEX) algorithm to implement AfP in an anytime

and parallelized manner. We then assess the potential efficiency gains of the AfP

interaction paradigm by empirically evaluating APEX-enabled boundary tracking

agents for three separate application domains using distinct robot platforms.

3.1 Problem Formalism

Recalling our supervisor-worker team layout in Figure 1–3, the robot agent

can be viewed as a function A that maps its sensory inputs x, parameter settings θ,

and internal state s, into action commands yr for the robot’s actuator block: 1

1 The variables x, y, θ, s are generally multi-dimensional vectors, although we
omit the overline notations here for simplicity.
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(yr, s)← A (x, θ, s) (3.1)

Independent of the agent’s operations, the human supervisor can choose to

assume manual control at any moment by issuing intervening commands yh. Im-

portantly, both the human’s commands yh and the robot’s commands yr consist of

low-level control signals to the actuator block. Also, the agent’s commands yr are

carried out only when the human is not intervening currently, i.e. yh 6= ∅.

During periods of human intervention, AfP calls for the agent’s parameter set-

tings θ to be continuously adjusted to adapt its behaviors and imitate the supervi-

sor’s control signals. Imagine that at each time instant there exists (at least) one

optimal parameter setting θ∗ that will allow the robot agent to exhibit exemplary

behaviors, as assessed by the supervisor. Importantly, optimal settings for the agent

are altered whenever dynamic events occur, such as changes in task targets, envi-

ronment conditions, or the supervisor’s intent. Although in general these events

and optimal values are not observable by the agent, we make the key assumptions

that the supervisor is constantly attentive, will intervene whenever events cause the

agent to behave in sub-optimal ways, and will specifically steer the the robot to fix

these misbehaviors. Consequently, the agent should adapt its current parameter val-

ues θ based on the history of previously seen commands {yh} throughout periods

of intervention, and also assume that once the supervisor stops intervening, then θ

has adapted to within a tolerable margin of θ∗.

The objective of AfP is to optimize the human-robot team’s efficiency, as quan-

tified by complementary aspects of task performance, active human workload, and

user satisfaction. These individual measures cannot be combined in general, even

though in some domains such as manufacturing, performance and workload can be

uniformly quantified in terms of financial gains and costs. Nevertheless, we will
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present in Section 3.3.3 an evaluation scheme for the AfP problem that employs

non-parametric statistics to assess the aggregate contributions from these multiple

facets of team efficiency.

3.1.1 Related Problems

The computational problem of Adaptation from Participation is closely related

to the research topic of Learning from Demonstration (LfD). Most notably, both

problems involve optimizing the robot agent’s policy parameters based on observed

human actions.

Nevertheless, AfP differs from LfD in several key aspects that highlight this

problem’s uniqueness and novelty. For instance, conventional LfD realizations take

an episodic approach to learning, whereas AfP is designed specifically to encour-

age online and fluid interactions. Also, conceptually, in LfD human teachers are

asked to focus on teaching new tasks to the agent and correcting its misbehaviors

(e.g. [14]). In contrast, in AfP the human supervisor is responsible for participat-

ing in the team and focus on successfully carrying out the team’s tasks, without

needing to worry about the robot agent’s internal learning process. Furthermore,

research objectives of LfD and AfP are complementary, since LfD seeks to learn

previously unseen tasks with minimal or no prior domain knowledge. On the other

hand, AfP aims to improve the moment-to-moment task performance for a robot

agent that has a certain degree of prior task competence. Finally, perhaps the most

important distinction is that LfD assumes a fixed task goal and thus aims to learn a

stationary optimal policy in a (statistically) unvarying environment. In contrast, we

devised the AfP paradigm specifically to cope with varying task objectives caused

by contextual changes, unexpected environmental disturbances, and evolutions in

the supervisor’s intent and preferences.
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3.2 Adaptive Parameter EXploration (APEX)

We developed an anytime algorithm [112], named as Adaptive Parameter EX-

ploration (APEX), that realizes the AfP paradigm and adapts an arbitrary robot

agent’s parameters during periods of human interventions. APEX maintains mul-

tiple concurrent hypotheses i, called particles, of potentially viable agent settings

θi. During the time interval between consecutive sensor updates, each particle’s pa-

rameter value θi is refined so as to produce agent commands that closely imitate the

supervisor’s intervening commands within a fixed-duration recent window. Since

this optimization process is susceptible to overfitting to short-term control signal

noise, APEX selects a winning particle based on its historical imitation consistency

and smooths the refined parameter values into the agent’s settings. This incremental

adaptation approach sidesteps the need to predict occurrences of dynamic interac-

tion events that affect the agent’s moment-to-moment optimal settings.

3.2.1 Applicability and Prerequisites

The APEX algorithm assumes that the supervisor is attentive throughout oper-

ations and will take over control whenever the agent is misbehaving. Consequently,

interventions from the supervisor imply that the robot’s current performance is per-

ceived as sub-optimal and thus requires re-tuning. Chapters 4 and 5 will expand our

investigations to account for intervention causes other than sub-optimal observed

performance, such as preemptive assistance due to worsening task conditions, and

personal propensity for manual control.

We originally designed the APEX add-on module to adapt parameters of arbi-

trary robot agents in a black-box manner, i.e. without altering their internal logic

and without given an analytical form for A. Nevertheless, we assume that each

APEX particle can make simulate the command outputs of the agent given arbi-

trary inputs, state, and parameter values. This ability allows particles to refine pa-

rameter values of black-box agents using numerical gradient-based optimization in
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the duration between consecutive sensory inputs. The success of such an iterative

approach also depends on the agent’s pipeline having significantly faster execution

time than the sensor update interval.

For practicality, we also considered simple robot agents that have a known

linear inverse mapping, i.e. θ = A−1 (x, s) · y. Unfortunately, most robot agents

are sufficiently complex such that obtaining A−1 is either impractical or ill-posed

due to the pipeline’s non-linear or non-bijective nature. Nevertheless, autonomous

systems with an accessible A−1, referred to as white-box agents, can rely on lin-

ear least squares to efficiently optimize their parameter values given a set of (non-

degenerate) input-output exemplar pairs.

APEX’s generic design allows it to refine both continuous and discrete param-

eter types. When deploying APEX, one must provide judicious parameter ranges to

ensure that the agent’s command outputs do not saturate or have near-zero gradients

for nearby parameter values. In practice however, we observed that APEX operates

well with even loosely-specified parameter ranges, since its particles are designed

to search and refine hypotheses within the parameter space.

3.2.2 Algorithm

APEX particles iteratively refine their parameter hypothesis on separate exe-

cution threads during the time interval between consecutive sensory inputs. Each

particle i is assigned a long-term cost Ci, which is an accumulator term that keeps

track of the consistency of the performance of its searched parameter results over

time. The main APEX procedure manages these optimization threads and operates

before and after executing the agent’s pipeline, as illustrated by Algorithm 1. When-

ever a sensory update becomes available, APEX pauses all particles’ optimization

threads, updates Ci based on the quality of each particle’s latest hypothesis, and

smooths the lowest-cost winning particle’s value into the agent’s settings. After

executing the agent’s pipeline A, if the human supervisor is still intervening, then
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Algorithm 1 Adaptive Parameter EXploration (APEX)
Inputs: initial agent parameters θ and state s

1: initialize hypotheses and long-term costs θi ← θ,Ci ← 0 ∀ i
2: loop
3: wait for new sensor data x
4: if particle optimization threads are actively refining θi then
5: for all particles i do
6: pause optimization thread i
7: update long-term cost Ci

8: choose winning particle i∗ ← argmaxi ({Ci})
9: update agent’s settings θ using θi∗

10: store prior state s′ ← s
11: execute agent’s pipeline yr, s← A(x, θ, s′)
12: if yh 6= ∅ then
13: store latest data exemplar {x, s′, yh}
14: resume all particle optimization threads
15: else
16: Ci ← 0 ∀ i

APEX resumes the optimization processes for all particles after incorporating the

latest input-state-output exemplar tuple; otherwise, during periods of autonomous

control, all particles are disabled, and their long-term costs are also reset.

The optimization thread for each particle i continuously refines its parameter

hypothesis θi using the W most recent training exemplars {xw, s′w, yh,w}w=1..W ,

each consisting of a sensor input instance, the robot agent’s prior state, and the

desired command from the supervisor to imitate. A mean squared cost is used as

the optimization objective:

cost (θi) =
1

W

W∑
w=1

‖yh,w − A (xw, θi, s
′
w)‖2 (3.2)

Optimization is carried out using iterative gradient-based search for black-box agents

and linear least squares for white-box agents that have an inverse mapping A−1.

As an anytime algorithm [112], APEX updates the agent’s settings as soon as

new sensory data becomes available, by integrating the refined parameter values

from a winning particle i∗. Nevertheless, choosing the winning particle based on
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cost (θi) alone would be short-sighted, as these costs are measured against the W

most recent training exemplars only. Instead, these near-term similarity measures

are folded into the particles’ long-term costs Ci, which are then used to determine

the winning particle based on its historical success at consistently imitating the

supervisor’s commands in the past:

Ci ← γ Ci + cost (θi) (3.3)

The discount factor γ ∈ [0, 1] dictates the relative importance of previously ac-

cumulated performance versus the latest short-term cost. This hyper-parameter

captures the degree of temporal consistency required for a given application con-

text and reduces the likelihood of oscillations between multiple winning particles,

which can lead to jittery and sub-optimal agent behaviors.

Once the winning particle i∗ is determined, its parameter hypothesis is smoothly

integrated into the agent’s settings. Whereas discrete parameter values are copied

directly, continuous parameters θc are smoothed using a learning rate α ∈ (0, 1]:

θc ← θc + α (θci∗ − θc) (3.4)

The hyper-parameter α also enforces temporal consistency by attenuating short-

term noise in the intervening commands yh caused by factors such as imprecise

human input signals.

Returning to the formulation for the short-term cost, the time window dura-

tion W serves multiple purposes in determining the success of APEX in practice.

For instance, W places emphasis on only the most recent human commands that

presumably address the latest dynamic event during operations. Separately, when

deploying the agent on an embedded system with limited computational power, the

window duration W can be tuned to improve the quality of gradient-based search.
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In particular, changing W balances between the quality (i.e. cost) of each a gradi-

ent update to θ versus the number of parameter updates that can be sampled within

a fixed time interval. Since W is innately related to the interaction context and

task domain, we empirically tuned this hyper-parameter by deploying our bound-

ary tracking agent in test runs and comparing APEX’s online adapted parameters

against post hoc batch-optimized parameter values.

3.2.3 Particle Types

Inspired by Monte Carlo sampling techniques such as particle filtering [91],

APEX uses multiple particle types to explore the parameter space effectively:

• Local search particles use gradient descent line search to iteratively find nu-

merical solutions to locally optimal parameter values for black-box agents;

• Random restart search particles are identical to local search particles except

that they reset to random initial values each time after executing the agent’s

pipeline; they also inherit the latest winning particle’s long-term cost Ci∗;

• Inverse optimal search particles use the linear inverse mapping A−1 of white-

box agents within a least squares formulation to directly solve for optimal

parameter values;

• A persistence particle is used for both black-box and white-box agent in-

stantiations to preserve the previous winning particle’s state and ensure that

successive parameter updates are never worse than the existing settings.

The above search strategies are designed to adapt continuous parameters while

adhering to a rate of adaptation determined by the learning rate hyper-parameter α.

In contrast, categorical parameters are refined by instantiating multiple particles

for different combinations of discrete configuration settings. This process allows

APEX to determine current discrete configuration settings based on the particles’

long-term costs while enforcing a given rate of adaptation using the discount factor

hyper-parameter γ.
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3.3 Aerial Coverage User Study with Simulated UAV

We conducted three sets of empirical assessments to validate the hypothe-

sized gains in team efficiency contributed by the Adaptation from Participation

paradigm. During this process, we deployed the APEX algorithm to adapt param-

eters of a vision-based boundary tracking system (see Appendix A for implemen-

tation details), and instantiated three interactive adaptive agents onboard distinct

robot platforms. This section presents a user study involving APEX-enabled in-

teractive agents on flying robots for performing aerial coverage tasks. This study

was carried out under controlled conditions and using a simulated aerial vehicle in

order to assess AfP’s contributions independently from practical deployment con-

cerns such as limited operating range and extraneous disturbances. As complement

to this controlled evaluation, the next two sections elaborate on field trials that as-

sess APEX-enabled interactive agents in real-world settings, deployed on the Husky

wheeled robot and the SL-Commander vehicle respectively.

In this user study, we compared APEX-enabled robot agents against other

common human-robot team configurations, namely:

• APEX BB: a black-box APEX-enabled agent that employed 6 local search

particles, one for each combination of discrete parameter values, as well as 2

random restart search particles and a persistence particle;

• APEX WB: a white-box APEX-enabled boundary tracking agent equipped

with 6 inverse optimal search particles and a persistence particle;

• CONST: a non-adaptive boundary tracking controller with refined parameter

settings that were hand-tuned to ensure competent tracking performance for

multiple types of terrain boundaries;

• MANUAL: a baseline configuration where the robot was controlled solely us-

ing teleoperation, reflecting situations where the supervisor completely dis-

trusted the agent due to persistent poor performance.

47



In each study session, the participant collaborated with one of the agent configu-

rations above to control the simulated aerial drone. The objective in each session

involved steering the vehicle over a designated sequence of terrain boundaries and

covering as much of this flight course as possible within a fixed time limit.

3.3.1 Participants

We recruited 15 individuals (1 female) from the Mobile Robotics Lab at McGill

University to engage in this study. Participants were all actively involved in robotics

research, and comprised of 5 undergraduate students, 8 graduate students, 1 post-

doctorate fellow, and 1 professor. We specifically targeted roboticists since they

already work with autonomous robot agents on a regular basis, and they are also

likely to be among early adopters of mainstream robotic technologies.

3.3.2 Infrastructure

To enforce repeatable study conditions, we integrated the boundary tracking

framework to control the SightedTurtleSim holonomic aerial drone simulator (see

Section 2.6.2). Although this robot exhibits idealized vehicular dynamics, frames

from its downward-facing cameras were synthesized from satellite footage to pro-

vide realistic visual stimuli.

We used the APEX algorithm to tweak configuration settings for the planar-

view boundary tracking pipeline. Discrete parameters of this agent comprised

of the boundary type Tb ∈ {Edge, Strip} that differentiated between coastline-

style contours from road-style boundaries, as well as the appearance type Ta ∈

{Hue,Grayscale,HueV alueHybrid}, which designated the pixel representation

used for segmenting out the terrain of interest in each frame. After detecting the tar-

get boundary line in each image, its intersection with the frame borders determined

a heading direction to steer the robot along the target boundary. This heading direc-

tion is then fed into a Proportional-Derivative (PD) controller, whose control gains

Kp, Kd were also regulated by APEX.
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Figure 3–1: The APEX aerial coverage user study features a two-pane display in-
terface. The left view shows frames from the simulated drone’s downward-facing
camera, overlaid with the detected boundary (blue line) and the agent’s/supervisor’s
angular rate steering commands (blue/green arrows). The right map view depicts
covered/missed portions of the flight course (green/cyan regions), the robot’s cur-
rent position (yellow square near the lower-left corner), and out-of-bound areas
(red-tinted regions).

The display interface for this study is shown in Figure 3–1, and integrates

a live camera feed from the aerial robot, a mini-map of the designated coverage

course, as well as information about the current session’s goals. The map view is

helpful for visualizing overall coverage progress, although the zoomed-in camera

view provided close-up visual details to help users steer along terrain boundaries

reliably. This camera view also incorporates overlays reflecting the state of the

boundary tracking process, such as the detected boundary line in the current camera

frame, as well as steering commands from both the autonomous agent, yr, and from

the human supervisor, yh.

We designed the boundary tracking agent to continue processing camera frames

even during periods of manual intervention, and to visualize its generated steering
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arrows on screen at all times. This constant feedback aids the supervisor in decid-

ing if the agent is capable of tracking the target boundary on its own, or if further

assistance is needed when the tracker is behaving poorly.

User are provided with a standard dual-joystick gamepad (Sony DualShock R©3)

to interact with the boundary tracking agent. The supervisor could engage interven-

ing control at any time by holding down a shoulder button and then manually steer

the vehicle by moving the left analog stick horizontally.

Each interaction session is structured in a game-like manner, and incorporates

both a coverage score as well as a time limit. These gamification elements are de-

signed to motivate participants to remain attentive and enforce adequate tracking

performance [95]. Also, we empirically tuned task conditions such as the camera’s

field of view and the robot’s forward speed and maximum turn rate to provide chal-

lenging experiences and motivate users to delegate the tracking task to the agent.

(a) (b) (c)

Figure 3–2: The flight course for the APEX aerial coverage user study incorporated
terrain boundaries with varying degrees of tracking difficulty, including a straight
highway (a), a narrow forest path (b), and a curvy coastline (c).

Furthermore, the designated flight course incorporated multiple boundary tar-

gets with varying degrees of tracking difficulty. As illustrated in Figure 3–2, these

terrains comprised of a straight Highway with many competing visual boundaries,

a narrow Forest Path with significant tree cover, and a curvy Coastline segment.

This final boundary target is particularly challenging to track for both humans and
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agents since it requires aggressive steering to keep up with the coastline’s constantly

changing landscape.

This study is executed in a fully automated manner to enforce uniform user ex-

perience and remove experimenter bias. At the start of each session, the simulated

robot is displaced to its starting position, and the user can then initiate operations

by pressing a button on the gamepad. During subsequent interactions, the on-screen

interface warns the user whenever the robot deviates from the designated path. If

the participant does not react to these warnings and steer the vehicle back on track

promptly, then the session is automatically reset to its starting state.

3.3.3 Procedure

Administer practice session

Administer agent evaluation sessions

Start

End

Show
tutorial
slides

Teleport drone to
starting position

Teleport drone to
middle of

Highway segment

Engage
free-roam

session

Engage
time-limited

session

Administer
user

preference
questionnaire

(repeat for 4 agents in random order:
APEX BB, APEX WB, CONST, MANUAL)

Figure 3–3: Flowchart for the APEX aerial coverage user study.

The flowchart for this study is shown in Figure 3–3. Each study run begins

with a brief presentation that explains elements of the interface, the human-robot in-

teraction context, and the adaptive boundary tracking agents being evaluated. This

overview is followed by a non-timed practice session to familiarize the user with the

control interface and task conditions. Subsequently, the agent evaluation phase of

the study consists of 4 aerial coverage sessions, each with a time limit of 3 minutes

and featuring one of the aforementioned human-robot team configurations. The

order of these configurations is randomly determined for each study instance.
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This study compares the overall efficiency of the adaptive agents against base-

line human-robot team configurations. In particular, we compute several evaluation

metrics over the interaction experience at the session-wide level, as well as for in-

dividual terrain boundary segments. The overall task completion is reflected by

the coverage score, which represents the amount of the flight course visited by the

robot’s camera swath. The moment-to-moment boundary tracking accuracy is ob-

tained by analyzing the traveled path and computing the mean distance to ground

truth statistic. Furthermore, the autonomous agent’s reliability is measured by the

agent failure ratio, i.e. the fraction of frames rejected due to detection pipeline fail-

ures. All three performance metrics above are important for determining the level

of overall team efficiency. Another analogous metric is the supervisor intervention

ratio, which ascertains the fraction of frames under manual control, and reflects the

amount of active human workload incurred. Finally, user preference ratings were

solicited after each session, via a 5-point Likert scale [59], to gather subjective

assessments toward each robot agent.

Each metric highlighted above quantifies a distinct aspect of team efficiency

and are all essential in forming a thorough evaluation of the AfP interaction paradigm.

Nevertheless, it can be challenging to determine an overall efficiency ordering of the

human-robot team configurations using these diverse metrics. For instance, if we

wanted to compute a linear aggregate score, we would need to perform extensive

empirical analyses to determine relative weightings for each metric. Separately,

we anecdotally observed a wide range of user behaviors that were consistent with

varied tolerances and emphases on the separate aspects of team efficiency. For in-

stance, some users frequently intervened to ensure that the robot was always flying

above the target boundaries, while others tolerated minor deviations made by the

agent as long as part of the terrain boundary remained in view.
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We addressed these concerns by adopting a non-parametric statistical approach

for establishing the aggregate agent ordering. Specifically, we compute mean rank-

ings of the four robot agent configurations by averaging across per-metric order-

ings. We also use the Friedman test [35] to identify the presence of statistically

significant preferences within these mean rankings. These findings are then refined

using the post hoc Nemenyi test [22] to determine the identity of the preferred agent

configurations. Furthermore, to corroborate these ranking results, we also compute

aggregate orderings using the Kemeny-Young voting method [110], which is useful

for resolving potential cyclic preferences by ranking agent configurations based on

the frequency of pairwise ordering comparisons.

3.3.4 Selection of APEX’s Hyper-Parameters

APEX regulates the rates of change for the agent’s parameter settings using its

learning rate α and discount factor γ hyper-parameters. We assessed the effects of

these settings prior to the study by having two expert users complete coverage ses-

sions with the APEX BB agent multiple times while using a {5× 5} grid sampling

for the hyper-parameter values. The resulting efficiency metric scores were aggre-

gated statistically, and revealed α = 0.4 and γ = 0.4 as most suitable configuration

for our fast-paced boundary tracking tasks.
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Figure 3–4: Average rates of change for the agent’s parameters are computed by
aggregating over 2 expert users’ aerial coverage datasets. Variability among discrete
parameters is correlated with APEX’s discount factor γ (a), while changes in the
agent’s continuous parameters are affected by APEX’s learning rate α (b).
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Figure 3–4 displays the average rates of change for the boundary tracking

agent’s parameters as functions of α and γ. We observe that these hyper-parameters

independently control the rate of adaptation for the agent’s continuous and discrete

settings. In particular, the association between γ and discrete agent settings is due

to the instantiation of individual APEX particles for all combinations of distinct pa-

rameter values. Since γ regulates the importance of each particle’s historical search

performance, smaller discount factor values will result in myopic selections with

more frequent parameter changes.

3.3.5 Results and Discussion

Figure 3–5 depicts mean agent rankings for the session-wide scale as well as

separately for each terrain boundary segment. These visualizations are accompa-

nied with statistical analysis resulting from Friedman and post hoc Nemenyi tests,

both suggesting the presence of significant different agent preferences among users.

We corroborated these efficiency orderings for the different human-robot team con-

figurations by computing aggregate rankings using the Kemeny-Young method,

which found identical orderings.

Session-wide rankings revealed the APEX WB adaptive agent to be the most

efficient overall, followed by CONST and APEX BB. All three agents were ranked

higher than the MANUAL teleoperated configuration, although no statistically sig-

nificant differences were found between the adaptive and non-adaptive agents.

Evaluations at the granularity of individual terrain boundaries showed that

the non-adaptive expert-tuned boundary tracker, CONST, outranked both adaptive

agents during the Highway and Forest Path segments. This preference can be at-

tributed to the high quality of the expert-tuned settings of the CONST agent, which

resulted in excellent tracking performance for relatively stable boundaries. Never-

theless, post hoc analyses in Figures 3–5b and 3–5c did not reveal any significant
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Figure 3–5: Critical
difference plots from
the APEX aerial cov-
erage study revealed
statistically significant
differences among
the agents’ per-metric
rankings. At the session-
wide scale (a) and
for the coastline seg-
ment (d), users preferred
both the adaptive and
expert-tuned agents,
although post hoc Ne-
menyi test found the
lack of any critical dif-
ferences among agents
(i.e. the presences of
thick horizontal lines
straddling APEX WB,
APEX BB, and CONST).
In contrast, both APEX
WB and CONST config-
urations were ranked
significantly greater for
the highway (b) and
forest path (c) segments.
All agent rankings
matched the aggregate
orderings resulting from
the Kemeny-Young
voting scheme.

differences between CONST and APEX WB during these terrain segments, thus sug-

gesting that the adaptive agent also attained comparable levels of team efficiency.

During the Coastline segment, the non-adaptive CONST agent was outranked

by both adaptive agents, APEX WB and APEX BB. By analyzing the raw inter-

action experiences, we observed that CONST was not able to track the constantly

changing shape of the coastline boundary despite repeated intervening assistance
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from participants. This finding demonstrated the utility of the Adaptation from Par-

ticipation paradigm, as both APEX agents were able to adjust their steering styles

dynamically after seeing the supervisor aggressively track the boundary target.

All of the aggregate rankings showed consistent preferences of the white-box

variant APEX WB over the black-box agent APEX BB. This result can be naturally

explained by the fact that APEX BB used gradient-based optimization to numeri-

cally approximate the analytical least squares solutions found by APEX WB.

Finally, although a few participants were able to track the target terrains accu-

rately using MANUAL teleoperation, overall this baseline configuration was statisti-

cally the least preferred setting among this study’s population.

In summary, this study showed that APEX-enabled agents contributed to high

degrees of team efficiency, and in particular attained levels to collaboration com-

parable to those from an expert-tuned non-adaptive robot controller. Whereas the

expert-tuned agent required time-consuming manual parameter tweaking by a knowl-

edgeable robot designer, the Adaptation from Participation paradigm helped inter-

active agents attain similar degrees of task competency based only on occasional

intervening assistance from non-expert operators. Furthermore, the AfP paradigm

was shown to be especially advantageous in situations where task conditions varied

wildly, which naturally warranted the need for dynamic behavior adaptation.

3.4 Campus Patrol Field Evaluation with Husky Wheeled Robot

Our second set of evaluations sought to re-substantiate the efficiency gains of

APEX-enabled agents, by moving from a controlled environment in the previous

study to a real-world deployment setting. As seen in Figure 3–6, participants in this

field study were asked to assist diverse types of agents and steer the Husky wheeled

robot to complete terrain patrol tasks on McGill University’s downtown campus. In

addition to coping with real-world constraints such as finite communication range

and dynamic obstacles like pedestrians, these participants also had to continuously
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Figure 3–6: A participant (left) collaborating with the interactive boundary track-
ing agent to steer the Husky robot during the campus patrol field trial while being
monitored by a study conductor (right). Inset: internal state of the interactive agent
(not shown to the participant) depicts the detected terrain boundary (blue line) and
turn rate steering signals from the agent and the operator (blue and green arrows).

monitor the physical well-being of the robot as well as its surroundings while com-

pleting their assigned patrol duties.

These in-field deployments compared the overall efficiency rankings between

the APEX BB adaptive agent, the expert-tuned static boundary tracker CONST, and

the fully teleoperated MANUAL baseline. The white-box agent APEX WB was omit-

ted since the frontal-view boundary tracking agent did not offer a linear inverse

mapping A−1 (see Appendix A for details).

In each trial session, the participant interacted with one of the agent config-

urations above to control the Husky robot. The session goal entailed steering the

vehicle at a specified distance alongside a sequence of terrain boundaries while ad-

hering to transition points corresponding to salient visual landmarks such as lamp

posts. Participants were instructed to complete this fixed-length patrol course accu-

rately yet also as quickly as possible.
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3.4.1 Participants

We recruited 7 individuals to collaborate with adaptive and baseline robot

agents during this campus patrol field trial. All participants had previously com-

pleted the user study and thus were accustomed to the supervisor-worker interaction

scheme. Nevertheless, none of the operators had any prior experience controlling

the Husky or similar types of wheeled robots.

3.4.2 Infrastructure

We deployed the frontal-view variant of the boundary tracking agent (see

Appendix A for details) to steer the Husky robot based on visual input from its

tilted front-facing camera. Contrary to the planar-view variant, the frontal-view

control mapping module accounts for the camera’s non-planar pose by projecting

image-plane boundary information onto the vehicle’s ground plane. This is real-

ized through a feature-based control law: we compute the intersection χ between

the image-plane boundary line and the bottom of the camera frame, as well as the

slope φ of the line, and prescribe the following parametric function for producing

normalized turn rate commands yr ∈ [−1, 1]:

yr = M1χ+M2φ+M3

The scaling factors M1,M2,M3 are used to linearly approximate the camera-to-

ground-plane projection transform. These parameters also encode the nominal lat-

eral distance to following alongside a given boundary target. In addition to this

more complex control mapping, the planar-view agent further pre-filters out hori-

zon content in each scene by cropping out the top H0 percentage of every camera

frame prior to detecting the ground-plane terrain boundary.

For this terrestrial robot controller, we used APEX to adapt the horizon cut-

off parameter H0, discrete appearance Ta and boundary type Tb specifications for

the visual detection stage, as well as the various control mapping parameters M1,
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M2, and M3. We specified loosely-estimated ranges for all continuous parameters,

which were obtained during preliminary field testing. During these testing runs,

we also manually refined the learning rate α and discount factor γ of the APEX

algorithm, starting from the user study’s settings. The final hyper-parameter values

were set to reflect the slower pace of the Husky robot: α = 0.2, γ = 0.7.

The gamepad control interface in this field trial was directly transplanted from

the aerial coverage study. As previously, the user assumed intervening control by

holding down a shoulder button and moving the left analog stick horizontally to

change Husky robot’s steering direction, which always traveled at a fixed speed.

Users were asked to supervise operations by walking alongside the vehicle and

were not provided with a visualization of the boundary tracking process. Although

this third-person perspective offered greater situational awareness of the robot’s

surroundings, the agent’s state was also less transparent. Consequently, we anecdo-

tally observed that operators were more sensitive to momentary agent misbehaviors

and intervened more readily overall. Furthermore, without visual feedback of the

agent’s steering commands, users were forced to adopt a trial-and-error approach

for disengaging control to assess whether the boundary tracking agent has adapted

sufficiently.

Most of the automated infrastructure from the aerial coverage user study were

adapted for this field trial, including data logging and randomized agent ordering

generation. Nevertheless, a human “study conductor” walked alongside each par-

ticipant during the trial sessions and used a separate gamepad to move the Husky

vehicle to its starting location as well as to trigger the start and end of each inter-

action session. As a last-resort safety measure, the conductor’s gamepad could also

be used to teleoperate the Husky while overriding all other control signals.
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(a) Footpath (follow at 1.5 ft) (b) Grass-side (follow at 1.0 ft) (c) Curb (follow at 0.5 ft)

Figure 3–7: The test course for the APEX campus patrol field trial consisted of
moving alongside a sequence of terrain boundaries with visually-defined transition
points. Boundary targets had varied visual appearances and included a footpath
segment (a), a grass-side sidewalk section (b), and a road-side curb (c).

As seen in Figure 3–7, the test course for this field trial involved patrolling

alongside three visually distinct terrains, comprising a Footpath, a Grass-side side-

walk, and the Curb of a long and curved stretch of road. Participants were instructed

to maintain specific distances laterally between the Husky robot and each boundary

target in order to facilitate our quantitative evaluations. Such a task requirement is

essential to several application domains, including street cleaning and agricultural

robotics.

3.4.3 Procedure

The flowchart for this field trial is shown in Figure 3–8. At the beginning

of each trial run, the participant is briefed on the patrol tasks and the test course.

Next, a free-roam practice session re-familiarizes the user with the gamepad-based

control scheme. During each of the following test sessions, both the participant and

the study conductor walk alongside the Husky robot to complete the designated

patrol duties as quickly as possible. The ordering for the robot agent configurations

was determined at random at the beginning of each trial run.

These field trial sessions again assessed a multitude of efficiency metrics.

Since the Husky robot lacked accurate outdoor localization capabilities, the mean

distance to ground truth measure was modified to represent average angular dis-

tances between the agent’s heading commands and ground truth values. These
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Figure 3–8: Flowchart for the APEX campus patrol field trial.

ground truth headings were generated post hoc by the boundary tracking agent

while using terrain-specific optimized settings. Separately, overall task comple-

tion was quantified as the total durations traveled in each session and across each

patrol segment. Further evaluation metrics were identical to those in the user study,

including the agent failure ratio, the supervisor intervention ratio, and the user pref-

erence ratings. Aggregate agent orderings were again determined based on mean

rankings and the associated statistical tests, which were further corroborated using

the Kemeny-Young voting scheme.

3.4.4 Results and Discussion

Both the mean agent orderings in Figure 3–9 and the Kemeny-Young aggre-

gate rankings in Table 3–1 revealed that the adaptive APEX BB agent consistently

outranked both the expert-tuned CONST boundary tracker and the MANUAL teleop-

erated configuration. Nevertheless, Friedman and post hoc Nemenyi analyses only

found minor statistical differences among agent preferences, and only pertaining to

the Footpath and Grass-side task segments.
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(a)

Rank 3 Rank 2 Rank 1

Crit. Diff. (α=0.10)

MANUAL

CONST

APEX BB

Footpath @ 1.5 ft (Friedman p = 0.28)

(b)

Rank 3 Rank 2 Rank 1

Crit. Diff. (α=0.10)

MANUAL

CONST

APEX BB

Grass−side @ 1.0 ft (Friedman p = 0.08)

(c)

Rank 3 Rank 2 Rank 1

Crit. Diff. (α=0.10)

CONST

MANUAL

APEX BB

Curb @ 0.5 ft (Friedman p < 0.05)

(d)

Figure 3–9: Critical dif-
ference plots from the
campus patrol field trial
indicated that the APEX
BB adaptive agent
consistently contributed
to the greatest overall
team efficiency in
comparison to both the
non-adaptive CONST
agent and the baseline
MANUAL teleoperated
configuration. Post
hoc Nemenyi analysis
revealed the lack of
significant differences
(i.e. the presence of
thick horizontal lines
straddling multiple
agents) among these
orderings.

The individual session-wide metric scores in Figure 3–10 revealed that APEX

BB attained the highest placement across nearly all metrics and participants. No-

tably, the statically-configured agent CONST achieved worse task completion and

accuracy than APEX BB in all the trial runs. This result can be attributed to the dif-

ficulty in manually conceptualizing the effects of the different mapping parameters
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Table 3–1: Kemeny-Young aggregate efficiency rankings from the campus patrol
field trial revealed identical efficiency orderings, favoring the APEX BB adap-
tive agent, over the expert-tuned CONST non-adaptive agent, and trailing with the
MANUAL baseline configuration.

Segment Worst Second Best
Session-wide MANUAL CONST APEX BB

Footpath (@ 1.5 ft) MANUAL CONST APEX BB
Grass-side (@ 1.0 ft) MANUAL CONST APEX BB

Curb (@ 0.5 ft) MANUAL CONST APEX BB

M1,M2,M3, as well as to the inherent need to adapt tracking behaviors to cater to

the varied distance requirements for each patrol segment.

These individual metric scores also reflected alternating preferences between

the non-adaptive CONST agent and the baseline MANUAL teleoperated setup. A

similar discrepancy between individual participants can be seen from their varied

subjective assessments, where some users were content to collaborate and help out

an autonomous agent, while others focused on attaining superior task completion

and accuracy using manual control alone. The conflicting merits of the CONST

and MANUAL configurations can further be seen in the minor discrepancies be-

tween mean agent orderings and the Kemeny-Young aggregate rankings, although,

as shown in Figure 3–9, these two agents attained very similar mean ranks.

In summary, this field evaluation demonstrated the various efficiency gains of

APEX-enabled interactive robot agents. Notably, our Adaptation from Participa-

tion paradigm enabled human-robot teams to achieve superior task performance in

comparison to a manually-tuned interactive robot agent. This achievement can be

attributed to both the presence of dynamic task requirements as well as the inher-

ent difficulty in conceptualizing inter-dependent parameter effects in complex robot

agents. Additionally, APEX-enabled human-robot teams attained competing levels

of task performance to plain teleoperated runs, yet required noticeably less amount

of active human workload. Although interpretations of the field trial findings were
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Figure 3–10: Session-wide scores
from the APEX campus patrol field
trial assessed separate aspects of ef-
ficiency, including total elapsed du-
ration (TotDur), mean distance to
ground truth (DistGT), agent fail-
ure ratio (AIFail), supervisor in-
tervention ratio (SupInt), and user
preference (UsrPrf). Smaller val-
ues are preferred on all metrics ex-
cept for UsrPrf. Each subplot
compared results between the adap-
tive agent APEX BB (green bar), the
statically-optimized agent CONST
(blue bar), and the MANUAL teleop-
erated configuration (red bar).

complicated by limitations of field deployments, such as variabilities in environ-

mental conditions and restrictive scheduling, all of these results were consistent

with the statistically significant findings from the user study.

3.5 Interactive Driving Field Demonstration with SL-Commander Vehicle

We conducted a third set of field assessments to investigate the feasibility

of the AfP paradigm for the emerging domain of autonomous driving. Such ad-

vanced computer-assisted capabilities promise innumerable benefits to society and

are being adopted by mainstream vehicle manufacturers as well as government bod-

ies [12, 93]. A common goal shared by many is for autonomous driving solutions

to operate robustly within diverse outdoor environments, which poses many chal-

lenges. For instance, outdoor paths can vary highly in their definition (e.g. gravel,

grass, metal, dirt trails). Also, navigation solutions based on the Global Positioning

System (GPS) are prone to failures when operating in previously unseen or chang-

ing paths. Furthermore, reactive way-finding using local sensors, such as cameras,

is susceptible to restrictions such as having constrained field of views, which limit

their autonomous navigation performance.
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Figure 3–11: The par-
ticipant, sitting in the
SL-Commander’s passen-
ger seat, collaborated with
our adaptive boundary
tracking agent during the
APEX interactive driving
field demonstrations. A
human driver was also
present and provided
redundant safety duties by
maintaining access to the
vehicle’s brake pedal and
emergency stop buttons.

In contrast, an appealing solution is to ask a competent human driver to occa-

sionally help the autonomous agent in navigating through dynamic and challenging

situations. Toward this end, we deployed the adaptive boundary tracking agent on-

board the SL-Commander vehicle, as seen in Figure 3–11, and invited 4 roboticists

to collaborate with this interactive adaptive automobile and steer along several test

tracks. These preliminary deployments aimed to explore the benefits and challenges

of adaptive human-agent interactions within an in situ context, with particular fo-

cuses on adapting to each operator’s driving preferences and coping with dynamic

environmental changes.

3.5.1 Infrastructure

We carried over the interactive boundary tracking agent from the Husky field

study and connected it to the SL-Commander’s drive-by-wire interface. This seam-

less integration demonstrated the flexibility of our general-purpose boundary track-

ing controller at accommodating different types of camera and actuator configura-

tions, thanks to the online behavior adaptation capabilities afforded by APEX.

As seen in Figure 3–11, during these experiments a human sitting in the driver

seat assumed the role of safety manager, and assumed permanent control over the
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vehicle’s brakes and kill switch. The passenger-side user interacted with the bound-

ary tracking agent using a gamepad and received visual feedback on a laptop screen.

During autonomous mode, the APEX-enabled agent exerted control over the vehi-

cle’s steering rate while traveling at a fixed speed. Similar to the Husky’s control

mapping, the user could engage intervening mode at any time by holding down a

shoulder button, and then steer by moving the left analog stick horizontally. Also,

the passenger could change the vehicle’s speed by pressing shoulder buttons to

increase or decrease the desired velocity by a fixed increment. Furthermore, the su-

pervisor could alter the camera’s pan-tilt position dynamically by moving the right

analog stick, as well as reset to its default pose by clicking into the analog stick.

The ability to dynamically change the camera’s pose was useful for quickly

re-positioning the limited viewport when the terrain boundary changed shape. Un-

fortunately, these pose changes significantly affected the boundary tracking agent’s

control law, since its feature gains reflected an approximation of the camera’s per-

spective transformation and thus needed to be updated. Tilting the camera vertically

also altered the amount and location of the horizon in view, which negatively im-

pacted the terrain segmentation process. Thankfully, the AfP paradigm enabled the

human-robot team to address these concerns by allowing the agent to learn from

brief demonstrations of proper steering after each pose change.

Figure 3–12: The primary test
course for the APEX interac-
tive driving field demonstra-
tions featured a 1 km gravel
course (yellow) at the Canadian
Space Agency site, which was
surrounded by numerous hur-
dles including narrow passages
(cyan), road intersections (yel-
low), watery ditch (blue), and
nearby parked cars and struc-
tures (red).
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The primary task scenario in these field demonstrations consisted of circum-

navigating a 1 km closed-loop gravel pathway at the Canadian Space Agency, as

seen in Figure 3–12. This course featured several challenging scenario segments,

including a forested patch, narrow land bridges passing over pipes, and water-filled

ditches. In addition to this primary test course, several participants also directed the

vehicle to navigate less well-defined paths, such as along the tire tracks of another

vehicle that had previously passed through a muddy field. These experiments were

performed within a controlled area located at the Canadian Space Agency, as part

of the 2014 NSERC Canadian Field Robotics Network (NCFRN) field trials.

3.5.2 Results and Discussion

All 4 participants assisted our boundary tracking agent in safely navigating

through the 1 km primary test course without requiring any interference from the

safety driver. Analyzing the recorded experiences revealed a common pattern across

all sessions: starting from cautious speeds as low as 2 km/h during initial task train-

ing, participants quickly increased the target velocity up to 20 km/h as the agent

soon latched onto the gravel road and drove smoothly without incident. Aggregat-

ing across all test sessions, the overall average speed of the vehicle was 8.98 km/h,

while a breakdown between periods of user intervention and autonomous control

revealed mean values of 8.76 km/h versus 9.35 km/h. Both the large initial speed

increase and the faster average velocity during autonomous control are indications

that users developed confidence in our APEX-enabled agent.

Rather than having to steer manually through the entire test course, the average

frequency of interventions during these test sessions was 40%, thus demonstrating

a notable decrease in active human workload. Nevertheless, there was an increase

in intervention frequency compared to recorded experiences from both the aerial

coverage user study and campus patrol field trial. We attribute this discrepancy

to the in situ context, and specifically to the participants’ reported precautionary
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concerns for their physical well-being. These concerns caused users to develop

heightened sensitivity to even slightly perturbing motions made by the robot agent.

Further investigations into intervention patterns revealed an interesting side-

effect: despite consistent tracking performance from our agent, some participants

proactively assumed control in anticipation to upcoming terrain hazards, such as

when moving into the segment bordering a watery trench. This phenomenon is

beneficial in several ways, since it shows that AfP allows users to preserve their

sense of control at all times, and also since such proactive interventions provide

extra training exemplars for the robot agent to further refine its behaviors.

(a) (b) (c)

Figure 3–13: Snapshots from a session through the primary test course during the
APEX interactive driving field demonstrations: (a) the human operator began by
training the boundary tracking agent at 2 km/h to follow a previously-unseen gravel
road (with the manual steering command shown as a green arrow); (b) the passenger
subsequently relinquished control and ramped up speed to 20 km/h after witnessing
robust autonomous tracking performance through diverse task conditions (with au-
tonomous steering command shown as the blue arrow); (c) the run concluded near
a large tent whose shadow represented a distracting secondary boundary on screen,
although the agent remained unfaltering in tracking the gravel path.

Figure 3–13 illustrates a typical run around the main test course, and demon-

strates our adaptive agent’s robust tracking performance throughout variations in

lighting and terrain. Several users also took the liberty to deviate away from the

gravel road during repeat sessions. Our APEX-enabled agent catered to these task

intent changes by adapting to track along distinct visual boundaries around the test

site, including a set of muddy wheel tracks as seen in Figure 3–14.
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(a) (b)

Figure 3–14: During a session of the APEX interactive driving field demonstra-
tions, the user steered away from the gravel road and onto fresh wheel tracks on a
muddy field: (a) following a brief period of manual steering, (b) our robot agent
adapted to follow the left wheel track on its own.

A key characteristic of our robot agent is the ability to quickly adapt to chang-

ing task scenarios. Evidence of such adaptations can be seen in its resilience to

track changes in the gravel road despite the presence of ample tree shadows, as

illustrated by Figure 3–13b. Also, Figure 3–15 shows that our autonomous con-

troller was also able to adapt its perception and control processes when the user

made impromptu changes to the vehicle’s camera positioning. Importantly, these

adaptations required only brief periods of manual steering to re-train the agent’s

parameters.

(a) (b) (c)

Figure 3–15: These snapshots depict interactive adaptation capabilities following a
user-induced change to the camera’s positioning during APEX the interactive driv-
ing field demonstrations. (a) After initial training, the agent autonomously tracked
the desired gravel pathway; (b) the agent’s perception and control gains were mis-
matched as the user panned the onboard camera to the right and downwards, in-
citing intervention; (c) our agent swiftly adapted its behaviors based on this brief
intervention period, causing the operator to promptly relinquish control.
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In summary, preliminary evaluations with our adaptive visual navigation agent

onboard the SL-Commander vehicle showed great success in its ability to adapt to

novel task objectives, naturally varying environmental conditions, and impromptu

changes in the user’s task intent. These interaction experiences further corroborated

our previous empirical findings by demonstrating the potentials of AfP at reducing

workload, building user satisfaction, and most importantly, improving the robot

agent’s performance over time through occasional intervening assistance.

3.6 Summary

This chapter introduced Adaptation from Participation (AfP) as a human-robot

interaction paradigm that extends shared control via behavior adaptation capabili-

ties. We also formulated AfP as a computational problem similar to Learning from

Demonstration yet with a distinct focus on changing task goals and dynamic condi-

tions. At its core, AfP offers robot operators freedom from the choice of manually

specifying and adjusting system parameters, while having the agent still cater to

their personal preferences through behavior adaptation.

Additionally, we presented the Adaptive Parameter EXploration (APEX) al-

gorithm as an anytime concurrent realization of the AfP paradigm. We devel-

oped three end-to-end instantiations of APEX-enabled agents on distinct aerial

and terrestrial robot platforms, and assessed the resulting efficiency of such adap-

tive human-robot collaboration within both controlled and real-world application

scenarios. These multi-domain investigations revealed that APEX-enabled agents

attained superior task accuracy and reduced active human workload in teleoper-

ated contexts. Our results also showed that AfP allowed enthusiast users to help

robot agents to achieve high levels of task performance rivaling manually-optimized

systems, without requiring tedious empirical analyses or expert knowledge of the

agent’s internal workings.
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One of our motivations for developing the AfP paradigm was to establish ro-

bust and adaptive autonomous agents as the baseline for our investigations into

human-robot trust. Additionally, these adaptive agents indirectly sought to gain

their human collaborator’s trust through behavior imitation. Nevertheless, despite

their demonstrated efficiency gains, these APEX-enabled agents lacked the capac-

ity to address the possibility of excessive interventions from the human supervisor

due to repeated distrust. These agents further lack the ability to distinguish inter-

ventions that are induced by distrust from those arising due to other causes, such

as a change in the user’s task intent, or a natural tendency to favor manual control

(especially as seen in in-situ interaction contexts). These limitations substantiate

the need to quantify the human collaborator’s trust state during interactions explic-

itly, so that the robot agent can address losses of trust via a direct approach. The

remainder of this thesis will address each of these topics in turn.
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Chapter 4
Understanding Human-Robot Trust

Chapter 3 presented the Adaptation from Participation paradigm as a means for

the robot agent to implicitly seek to improve the human supervisor’s trust. For the

remainder of this thesis, we consider how the supervisor’s moment-to-moment trust

state can be capitalized by the agent directly to maintain an efficient and trusting

collaboration. This approach can be broken down into three constituents:

1. characterizing factors that affect the human’s moment-to-moment trust state;

2. modeling the temporal dynamics of the supervisor’s trust state;

3. building reactive agent behaviors induced by this trust signal to mitigate trust

loss and potential teamwork breakdown.

This chapter focuses on the first component, and reports on two interaction

studies investigating the dynamics and evolution of trust within supervisor-worker

human-robot teams. The first experiment on “event-induced trust changes” ana-

lyzed changes in the supervisor’s trust state in response to different manipulated

events. The second observational study on “real-time trust dynamics” expanded

the scope to cover experiences over prolonged and typical interaction sessions, and

without manipulating the agent’s behaviors.

Descriptive analyses on these datasets revealed correlations with each human

supervisor’s evolving trust state to a key set of factors arising from the interaction

experience. These factors are valuable toward building computational models that

predict changes to the individual’s trust state. In fact, the first study included such
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a preliminary modeling effort, although modeling real-time trust dynamics will be

the primary topic discussed in Chapter 5. In addition to relating the trust state to

diverse factors, both studies also produced practical insights that will help establish

a natural structure to our temporal trust modeling efforts. Finally, the interaction

datasets themselves represent a rich training corpus of experiences from many hu-

man supervisors with diverse backgrounds, which we will use to build data-driven

and personalized trust dynamics models.

4.1 Methodology

One of the main goals of the two studies presented in this chapter is to quantify

the relative importance of different interaction factors that can affect the human’s

trust state. We addressed this objective by first enumerating important factors iden-

tified in relevant literature, and then evaluating their effects on the supervisor’s trust

dynamics. This section describes our event-centric view for assessing trust factors.

We also elaborate on the final set of chosen trust factors, and further explain the

methods and instruments used to elicit trust responses from study participants.

4.1.1 Event-Centric View

Similar to the formulation for Adaptation from Participation (AfP), we parti-

tion a period of human-robot interaction based on a sequence of discrete events,

each of which corresponding to a notable change in the state of the robot and/or the

environment. Sample events for visual navigation tasks include a sustained period

of boundary misdetection failures by our agent, or strong force (such as gust) that

pushes the robot sideways and causes it to lose track of the target boundary. By mea-

suring the change in trust state in response to different event types, we can quantify

fine-grained trust dynamics at small time scales. This event-centric perspective dif-

ferentiates our investigations from the majority of existing studies, which have char-

acterized impacts on the post-experience trust state aggregated from longer-term

interactions (e.g. [24, 34, 107]). This view also complements our AfP paradigm:
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whereas optimal behaviors for the robot agent are affected by dynamic events that

partition the interaction experience into disjoint periods, the human’s trust state is

impacted in an cumulative manner during each of these periods.

4.1.2 Trust Factors

Prior to carrying out our experiments, we considered the large corpus of factors

identified by the literature to influence trust in human-robot and human-automation

teams (e.g. [4,23,41,79]). We refined this list by eliminating factors that were incor-

porated into the design of our agent and interface (including situational awareness

and interactive adaptability), as well as factors whose values were expected to be

stationary across all study sessions and participants (such as the type of robot ve-

hicle and the operator-robot proximity). Given our research end-goal of inferring

the human’s trust dynamics during interactions, we also excluded entries that could

not be obtained by the robot agent, either via sensory observations or by querying

the human (e.g. task complexity, shared mental models, etc. [41]). Furthermore,

since our agents are assumed to be always well-intentioned and never adversarial,

we discarded all intention-centric trust factors.

The remaining entries include several groups of factors that can be extracted

directly from the interaction experience:

• the task accuracy and completion;

• the rate at which the robot agent fails to produce sensible commands (i.e.

“algorithmic failures”), possibly due to noisy or challenging task conditions;

• the frequency of interventions from the supervisor;

Several other trust factors can be obtained by querying the human supervisor at

different times during the study:

• a pre-experiment survey: user demographics, general attitudes, and prior ex-

perience with robots and remote control tasks (following [23]);
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• post-session questionnaires: assessments of the robot’s and user’s task per-

formances, as well as the robot’s perceived robustness and adaptability;

• a debriefing questionnaire: experiment-wide task load assessments (via Raw

TLX [43]), and post hoc updates on trust propensity toward robots.

Our study design highlights the important notion that the supervisor’s trust

state is dependent on factors at multiple time scales. In particular, we expect per-

ceptions obtained during the survey and debriefing questionnaires to be constant

throughout the study, in contrast to per-session user assessments. Also, experience-

based factors can be measured both on an event-centered granular time scale, as

well as aggregated over a cumulative period of interaction.

4.1.3 User Assessment

Figure 4–1 depicts the general visual layout for questionnaires administered

during the studies. Most of the questions used a continuous interval answer format

to elicit either unipolar (e.g. Likert scale [59]) or bipolar responses, while few

exceptions asked for discrete-choice responses. We gathered responses using the

Visual Analogue Scale (VAS), i.e. a continuous and bounded scale without tick

marks, which boasts superior metric properties over N-point discrete scales [74].

We specifically chose this continuous scale so that we could apply regression-based

techniques to model these user responses.

In addition to gathering assessment-based trust factors, users were also asked

to introspect and quantify their trust states both before and after each interaction

event. Each trust assessment query employed a single-question format, i.e. “What

is your degree of trust in the robot agent’s performance right now?”

Our single-question trust query contrasts with multi-item trust scales proposed

in the literature [47,64]. In general, such single-item queries potentially suffer from

reduced expressiveness and diminished psychometric reliability. Nevertheless, ex-

isting multi-item trust scales degenerate to closely resemble our answer format,

75



Figure 4–1: The post-session questionnaire for the event-induced trust changes
study comprised of assessment queries using a continuous Visual Analogue
Scale (VAS) format, as well as few discrete-choice questions.

since many of their questions were not applicable to our interaction context (e.g.

concerns about the robot’s integrity or its physically harmful actions), while we

administered other queries as separate factors (e.g. perceptions of the agent’s re-

liability and predictability). Also, we chose this single-question trust format to

facilitate collecting repeated trust assessments at event-time scales and mitigate

the likelihood of discouraging and annoying participants by inundating them with

lengthy questionnaires after every minute or so during the study. This practicality

consideration has been emphasized by similar studies as well [23, 79].

4.2 Experimental Study on Event-Induced Trust Changes

The first study asked participants to supervise and assist our boundary tracking

agent (see Appendix A for details) in controlling a simulated aerial vehicle along

rural roadways. These task scenarios were carried out via the SightedTurtleSim

drone simulation framework using static satellite footage of various farmlands. At
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a certain point during each session, the robot agent’s behavior would be altered

programmatically to elicit reactions and changes in the user’s trust state. In addition

to these recorded interaction experiences, each session began and ended with short

questionnaires about the robot agent’s perceived performance. Analyses on the

resulting datasets quantified key relationships between trust responses, different

types of interaction events, as well as a number of other factors. We further describe

a preliminary modeling attempt for predicting event-time changes to the human’s

trust state based on the recorded dataset.

Interaction sessions in this study all had short durations (< 60 seconds each),

and also shared a common task structure: follow a straight road for about 30 sec-

onds until an intersection, make a specific turn, then continue tracking the new

path. All participants were told before the study that the boundary tracking agent

was capable of following along the sides of roads proficiently, although it lacked

the ability to decide between multiple target boundaries at intersections.

This study focused on events corresponding to different types of robot failures,

i.e. periods of decreased reliability in the agent’s road tracking performance. We

realized these low-reliability states by altering the terrain segmentation parameters

of the agent to make it harder to distinguish between the visual appearance of the

road versus its surrounding farmland. By toggling between reliability states at dif-

ferent times during each session, this study investigated the effects of the following

event scenarios:

• Baseline: the boundary tracking agent is left in its high-reliability state

throughout the entire session;

• PoorStart: the agent starts in the low-reliability state for 10 seconds and

is then switched into the high-reliability setting before the road intersection;

• RobotFault: the agent is momentarily toggled into the low-reliability state

for a 10-second period in the middle of tracking the first road segment;
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• Limitation: the agent is switched into the low-reliability state at the road

intersection and then switched back into the high-reliability state after 10

seconds.

Prior studies with similar human-robot team configurations have shown that

the robot’s reliability affected trust differently depending on its timing, notably

with poor initial performance having the most negative impact on the resulting trust

state [23]. This study extended investigations by relating low reliability to distinct

causes, such as poor initial tuning of the agent’s settings (PoorStart), inexpli-

cable algorithmic failure (RobotFault), or an expected lack of programming to

decide between multiple concurrent task objectives (Limitation). We hypothe-

sized that most users would behave in a rational manner, and will attribute blame

following misbehaviors differently based on the cause of each failure.

Several research groups have investigated similar types of links between trust

responses and the cause of automation failures in the human-automation realm [26,

48, 79]. Nevertheless, these prior studies found differences in trust responses to

false-positive and false-negative behavior of classifier-style automation tools, which

are not relevant to our control-oriented robot agent.

4.2.1 Participants

We recruited 30 participants (6 females) from the School of Computer Science

at McGill University to participate in this human-robot interaction study. The study

population had a predominantly young adult age range (µ = 27, σ = 7 years),

and included 11 undergraduate students, 13 graduate students, 2 professors, and 4

university personnel.

These participants reported vastly diverse degrees of prior knowledge, expe-

riences, and attitudes. These diversities were reflected in their questionnaire re-

sponses on driving skills (µ = 64%, σ = 36% degree of agreement with “com-

petent driver”), propensity toward car automation (µ = 48%, σ = 25% “comfort
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using cruise control”), Radio-Controlled (RC) vehicles (µ = 45%, σ = 33% “com-

petence”), and visual-feedback teleoperation (µ = 32%, σ = 35% “competence”).

Additionally, only 47% of users self-reported to being robotics researchers. Never-

theless, none of the users had any interactions with our boundary tracking system

before this study.

4.2.2 Infrastructure

The interaction experiences in this study adhered to a “Wizard with Oz” style,

i.e. with a human-centric focus with real technology [88]. The simulated aerial

robot was controlled by our boundary tracking agent alone, as opposed to being

covertly steered by a human “Oz”. From the participant’s perspective, these inter-

actions closely resembled real-world settings, thus ensuring that the resulting trust

assessments and recorded experiences reflect natural and realistic interactions.

The graphical user interface shown in Figure 4–2 was based on the camera

view used during the evaluations of APEX-enabled adaptive agents in Chapter 3.

In addition to depicting the steering direction arrows and the detected boundary line,

this interface iteration also displayed the detected boundary curve, as a cyan-colored

contour. We added these extra visualization elements to help participants better

understand the agent’s internal state, by perceiving when its visual segmentation

algorithm either inaccurately recognized the target boundary or failed altogether.

At any time during the sessions, the participant could intervene and manually

steer the aerial vehicle by holding down a mouse button while displacing the cursor

over the camera view in the desired direction. This on-screen control interface

differed from the use of a gamepad in our previous studies and was specifically

chosen to accommodate this study’s broader audience.

To enforce consistent task conditions, the study scenarios involved tracking

rural roadways with very similar appearances, as seen in Figure 4–2. Nevertheless,

road segments and turn directions were varied across sessions so as to introduce
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Figure 4–2: Display interface for the event-induced trust changes study depicted
camera frames from a simulated aerial robot, overlaid with its boundary tracking
agent’s detected boundary contour (cyan curve), line fit (blue line), and heading
command (blue arrow). Also, the user’s command was shown as a green arrow
during interventions. Further overlays denoted the current session ID and task goal.

slight diversity in experiences and to mitigate potential memory effects. Both the

vehicle’s forward speed and altitude were kept constant throughout the sessions,

and their values were hand-tuned and validated by several test users. These set-

tings were tuned to ensure that the visual tracking tasks were gently paced so as to

accommodate the study’s broad audience.

The infrastructure of this study was designed to operate in a fully automated

manner, without the need of a human study conductor. This approach enforced

consistent interaction experiences across participants and mitigated possible biases

introduced by a human experimenter. Additionally, this automated infrastructure

handled all event triggers, data logging, and synchronizations between the Sighted-

TurtleSim simulator, the boundary tracking agent, and the visual interface between

study sessions.
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4.2.3 Procedure

Administer practice sessions

Administer reliability event sessions

Start
Show

tutorial
slides

(repeat for 4 reliability events in random order:
Baseline, PoorStart, RobotFault, Limitation)

Administer
demographics

survey

Teleport drone to
starting position

Administer
pre-session

trust
questionnaire

Engage
free-roam

session

Administer
post-session

questionnaire

Teleport drone to
starting position

Administer
pre-session

trust
questionnaire

Engage
path-limited

session

Administer
post-session

questionnaire

End

(repeat for 2 practice scenarios)

Administer
debriefing

questionnaire

Figure 4–3: Flowchart for the event-induced trust changes study.

As depicted by the flowchart in Figure 4–3, this study was separated into mul-

tiple phases that began with a demographics survey questionnaire. A set of tu-

torial slides then explained the supervision task and interaction context, and also

described the robot’s capabilities at tracking visual boundaries along with its lack

of ability to change tracking targets. The tutorial further emphasized that the robot

agent was programmed purely to complete its tasks in a motivated and non-adversarial

manner, and therefore users should base their trust assessments solely on the robot’s

performance, as opposed to questioning its intentions.

Next, participants interacted with boundary tracking robots during 6 short ses-

sions, including 2 practice instances and 4 distinct event scenarios in a randomized
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and counterbalanced order. Every session began by asking the user to indicate

their prior trust assessment toward the yet-unseen robot agent, which was followed

by the actual interaction phase, and then ending with a post-session questionnaire.

The first practice session helped the user get acquainted with the interface and the

robot agent during free roam. The agent was programmatically toggled into its low-

reliability state on several occasions during this initial session, both to demonstrate

failure events and to prompt the participant to engage in interventions. The second

practice session consisted of a variant of the Baseline scenario and acquainted

participants with the road-following task objective by providing a demonstration of

a typical interaction experience.

Following the 6 sessions, the study concluded with a debriefing questionnaire,

which assessed the cumulative interaction experience and collected free-form feed-

back. These study runs lasted 27 minutes on average.

4.2.4 Results and Discussion

This section presents statistical analyses on several key aspects of the recorded

study dataset. We investigated order effects resulting from the crossover session de-

sign, as well as the impact of event scenarios on the amount of change in users’ trust

assessments. We also studied the relative significance of various factors previously

identified in the literature on the influence of real-time human-robot trust.

Session Order Effects and Properties of Pre-Session Trust

It is important for the participants to evaluate each session independently in or-

der to characterize the causality of different events on their trust responses. Toward

this end, the tutorial and every pre-session trust questionnaire repeatedly empha-

sized that the experiences from each interaction session should be independently

assessed and that each session may encompass robot agents with different reliabil-

ity levels, differing task objectives, as well as distinct environments.
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Figure 4–4: Pre-session
trust assessments for the
event-induced trust changes
study were consistent across
sessions, and their means
showed slight positive trust
bias.

Figure 4–4 shows the prior trust assessments reported at the start of each ses-

sion. A repeated measures analysis of variance (rmANOVA) revealed no significant

effects between these prior trust states to the session ordering (F (5, 145) = 0.30,

p = 0.91), although there was a strongly significant effect from the different users

(F (29, 145) = 24.18, p � 0.001). We thus conclude that although users naturally

had different trust propensities, their prior trust states were not significantly biased

by the session ordering.

These results also suggest that participants exhibited slight positive trust bias,

assuming that a response of 0.5 corresponded to a neutral state. A one-way two-

tailed Student’s t-test revealed that mean prior trust assessments across users and all

sessions (including practice) were significantly different from the null hypothesis

(p < 0.05). This positivity bias corroborated similar findings in previous human-

robot studies [24, 29].

Effects of Event Scenarios

Figure 4–5 shows changes between the pre- and post-session trust assessments

in response to the 4 event scenarios in this study. Repeated measures ANOVA

revealed significant effects on the mean amount of trust changes due to events

(F (3, 87) = 16.61, p� 0.001) and due to users (F (29, 87) = 2.35, p < 0.01). Post

hoc pairwise comparisons using the Tukey’s range test [44] at the α = 0.05 level

showed non-significant differences in trust changes only between Baseline &
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Limitation, PoorStart& RobotFault, and PoorStart& Limitation.

The large number of event pairings with significant trust responses suggest that

users attentively discriminated the robot’s behaviors during different task sessions.
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Figure 4–5: Trust varia-
tions in response to event
scenarios in the event-
induced trust changes
study were consistent with
rational reactions based on
causal attribution theory.
The slight trust increase
in the Limitation
scenario suggested that
users deliberately did not
blame the robot agent for
failing to carry out a task
change given its known
programming limitations.

Looking at average user responses, the gains in trust in reaction to the high-

reliability Baseline setting were expected, and similarly so were trust losses due

to failures during the PoorStart and RobotFault scenarios. Although the

magnitude in trust lost between PoorStart and RobotFault were not signif-

icantly different, Figure 4–5 suggests that users reacted more leniently when the

agent in PoorStart started with poor performance but then soon showed im-

provements, as opposed to when the initially-reliable robot agent in RobotFault

inexplicably failed to track the roadway.

In contrast, the dominant response of increases in trust for the Limitation

scenario may appear surprising, since the robot agent was programmatically switched

into the low-reliability mode at the road intersection. Nevertheless, we believe that

users deliberately did not penalize such failures because they were aware that that

the agent lacked the capabilities to carry out changes in the task goal. Therefore,
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the robot’s momentary drop in reliability following the intersection was likely inter-

preted in analogy to a switch from the Baseline to the PoorStart conditions.

These similarities in trust responses were consistent with our post hoc pairwise

comparative findings.

The keen reader may have noted the apparent dichotomy between these results

and similar human-robot interaction studies [23] that found trust to be most detri-

mentally affected when low-reliability events occurred during initial interactions

between foreign operators and robot agents. This prior empirical finding captured

the critical essence of “making a good first impression”. Nevertheless, these results

focused solely on low-reliability events with non-apparent causes, while our exper-

iment should be viewed as a complementary extension that assessed the impacts of

different types of low-reliability events.

In summary, our findings indicated that different event causes had significant

effects on the magnitude of change in the user’s trust state. Following our hy-

pothesis, behaviors from most users were consistent with deliberate and rational

considerations with the robot agent’s limitations in mind.

Impacts of Trust Factors

We performed a backward stepwise regression analysis to isolate the most sig-

nificant relationships among various experience-based and assessment-based fac-

tors with event-induced trust changes. This regression process started from a full

linear model and was carried out using the Sum Squared Error (SSE) criterion,

which iteratively removed the most insignificant factors (when p > 0.1) and re-

introduced relevant factors (when p < 0.05). We disallowed interactions and

high-order terms to preclude spurious associations between factors at different time

scales. Experience-based factors reflecting the immediate post-event reactions were

computed over a 10-second window. This duration setting was chosen to match

the length of the pre-determined lapse into the low-reliability mode during the
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study scenarios. The placement of event windows were sampled at random for

the Baseline scenario, due to the lack of any failure events.

Table 4–1: Among major factors relating to event-induced trust changes resulting
from stepwise regression, experiment-wide and post-session personality factors ex-
hibited stronger effects compared to metrics derived from the actual experience.

Categories (Init. FC) Final FC DF Σ MS Min. p Avg. p Max. p
Survey & debriefing (24) 13 15 4.25 < 1e−10 < 0.01 0.02

Post-session (4) 2 2 1.27 < 1e−16 < 0.01 0.02
Session-wide experience (12) 4 4 0.30 < 1e−2 0.02 0.04
Post-event 10 sec window (12) 3 3 0.21 < 1e−3 0.27 0.79

Residual 84 0.01
FC: factor count DF: degrees of freedom Σ MS: combined mean sum of squares

Table 4–1 provides a summary of the stepwise regression results. The regres-

sion process distilled 52 trust factors at multiple time scales into a final form with

22 major factors. Notably, both the session order (p = 0.60) and event scenarios

(p = 0.20) were removed during the iterative regression process. Remaining factors

at the experiment-level scale included demographic entries (e.g. age, occupation),

prior expertise and attitudes (e.g. driving and robot control experience, willingness

to use a self-driving car), as well as post-experiment assessments (e.g. measures

of mental task load). Significant session-level factors entailed post-session assess-

ments of the robot’s performance, as well as session-wide measures of the agent’s

internal failure rate and the supervisor’s intervention frequency. At the event-time

scale, the externally-quantified task accuracy and the agent’s mistakes were the

most influential factors. The final model demonstrated excellent data fit, with a

Root Mean Squared Error of RMSE = 0.11 and R2 = 0.83 goodness-of-fit.

We believe that the categorical event scenario factor was dropped during the

iterative regression process in favor of the more expressive continuous-valued mea-

sures for characterizing interaction experience. More importantly, these experience-

based factors were dwarfed in significance compared to user assessments, particu-

larly at the experiment-level time scale, as reflected by the aggregated Mean Sum

of squares (MS) and average p-value statistics in Table 4–1. Therefore, these results
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suggest that short-term trust dynamics were influenced by the supervisor’s person-

ality traits (e.g. expertise, beliefs, tendencies, perceptions) much more so than the

actual interaction experiences, which is somewhat surprising and counter-intuitive.

User Feedback

One participant noted during the debriefing questionnaire that he experienced

difficulty in quantifying trust changes using the VAS format, specifically in that the

range between “absolute lack of trust” versus “full certain trust” was excessively

broad compared to most of his short-term trust changes. A few users also indicated

that the mouse-based intervention interface was “somewhat non-intuitive and hard

to get used to”. Furthermore, several participants who had little prior experiences

with visual teleoperated systems and video games felt that the displayed boundary

curves were not useful, and instead overwhelmed and distracted their camera view.

We subsequently contacted all study participants to query about these issues,

and found that the concerns were isolated only to a small minority of the study pop-

ulation. Nevertheless, we addressed this feedback in the design of our subsequent

user study, which will be discussed in Section 4.3.

4.2.5 Predictive Model for Event-Time Trust Changes

Following the analyses above, we made a preliminary effort to build a model

for predicting trust changes at the event-time scale. This effort required a critical

change in methodology from previous investigations, which quantified the relation-

ships between trust and all types of related factors from the collected dataset. In

contrast, our event-time trust changes model ∆T aimed at predicting moment-to-

moment trust changes during interactions with potentially new human supervisors

while having minimal or no prior knowledge about these users. Although previous

results revealed the dominance of personality-based factors over experience-based

metrics on event-induced trust changes, such information may not be available to

the robot agent. These personality-based factors also tended to be stationary during
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short to medium-length interactions, so they would not be able to predict event-time

dynamics in the trust state. Therefore, we excluded all factors obtained during the

survey and debriefing questionnaires for this predictive modeling effort.

Parametric Model Form

This event-time trust changes model was constructed using the same stepwise

regression approach from previous analyses. We quantified the per-session trust

change ∆Tsession ∈ [−1..1] as a weighted linear sum (with weights ω) of several

experience-based metrics, namely the tracker failure rate, the user intervention rate,

and the distance to ground truth trajectory. These metrics were summarized at both

the post-eventW -second scope (Epost-eventi ) and at the session-wide level (Esessionj ).

In addition, post-session assessments (Asession
k ) of the robot agent’s perceived per-

formance, adaptability, and robustness were also included in the linear model.

∆Tsession (W,Q) =
1

Q

[
round

(
Q · Tpost-session

)
− round

(
Q · Tpre-session

)]
=
∑
i,j,k

(
ω0 + ωi Epost-eventi (W ) + ωj Esessionj + ωk Asession

k

)
(4.1)

This model has two hyper-parameters: the post-event window durationW , and

the trust quantization level Q. The window duration W characterized the model’s

temporal sensitivity to post-event experiences. W can be tuned to match the re-

quired sensitivity for a given interaction context, be it our continuous-time con-

trol tasks or turn-based episodic tasks. The trust response quantization level Q

addressed the separate concern of potential sources of bias in questionnaire re-

sponses [15]. Some of these biases were addressed by our study design, such as

using the VAS answer format to achieve desirable metric properties [74]. The Q

hyper-parameter worked in conjunction by discretizing trust state values to attenu-

ate the variability in exact pixel placements for each questionnaire response.
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Figure 4–6: Learning
curves for the event-time
trust changes model ∆T
(with W = 2, Q = 31)
compared prediction
errors of variable-sized
training sets (up to 80%
of the dataset) and of a
held-out test set, averaged
across 50 independent
runs. The asymptotic
gap between the two
error curves suggest
the presence of high
variance in this learned
model, thus indicating that
larger-sized datasets could
further improve overall
prediction accuracy.

Evaluation of Model Accuracy

We constructed a test set containing a randomly chosen 20% of the study pop-

ulation and carried out hyper-parameter model fitting using 6-fold cross-validation

on the remaining dataset. Regression instances were trained for a combination of

11 window duration values (W ∈ [0.5, 20] sec) and 13 quantization levels (Q ∈

[3, 501]). Among these, the instance with the smallest RMSExval was designated

as the final model form, and had parameter values of W = 2 seconds and Q = 31

levels. The short 2-second time window was sensible given the fast pace of our vi-

sual navigation tasks, whereas the fine-grained quantization level reflected the need

to capture minute trust changes at the event-time scale.

The learning curves for the final model are shown in Figure 4–6. Note that the

horizontal axis depicts the size of the training set, rather than the learning iteration,

and thus the increase in training-set error expectedly demonstrated reduced over-

fitting as the training dataset grew. Prediction accuracies for trust changes trained
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on 80% of the study dataset were as follows: RMSE
train

(96) = 0.13 (σ = 0.01),

RMSE
test

(24) = 0.19 (σ = 0.05). The asymptotic convergence in the training-set

and test-set errors indicated that this regression model required a reasonably-sized

training set to allow for sufficient generalization. More vitally, the asymptotic gap

between the two error curves suggested that our predictive model exhibited high

variance and possible over-fitting behaviors. Therefore, we could expect to improve

prediction accuracy by further expanding the size of our training dataset.

Finally, by interpreting RMSE
test

as the standard deviation in expected pre-

diction errors of event-time trust changes for previously unseen human supervi-

sors, we expect in 95% of cases to see prediction errors within ±0.37 (recalling

that trust change values lied within [−1..1]). We thus conclude that this prelimi-

nary trust model exhibited only moderate levels of predictive power. This limita-

tion may be attributed to the variability in behavior and responses among different

users, which were shown in our previous analyses to have dominant effects on these

users’ changing trust states. Consequently, our subsequent trust modeling efforts in

Chapter 5 will prioritize model personalization as a critical feature.

4.3 Observational Study on Real-Time Trust Dynamics

The previous study assessed event-time impacts on the supervisor’s trust state

by manipulating the interaction experience. To complement its findings, we also

conducted an observational study to collect and evaluate interaction data during

extended operations while avoiding the use of experimental conditioning. Partici-

pants were asked to provide an additional form of live assessment by critiquing the

robot agent’s performance, in order to assist in quantifying real-time trust evolu-

tions. This study targeted a remarkably diverse yet domain-specific population of

roboticists from multiple institutions belonging to a nation-wide robotics network.

Beyond the primary purpose of building a sizable corpus of interaction datasets

toward our real-time trust modeling efforts, this study also compared the relative
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importances of diverse experience-based trust factors. In particular, by contrasting

the effects on trust between the robot agent’s own performance estimates and vari-

ous forms of feedback from the supervisor, our investigations aimed to extend and

complement findings from the previous event-centric experimental study, which

highlighted the dominant influences of personality-based trust factors.

4.3.1 Participants

We recruited 21 participants (1 female) during the NSERC Canadian Field

Robotics Network (NCFRN) April 2014 trials to take part in this observational

study. The study population consisted wholly of robotics researchers, comprising

predominantly of graduate students (86%), as well as few post-doctorates and pro-

fessors. The average age of these participants was 27 (σ = 4).

In contrast to the broad diversity of the audience during the event-induced

trust changes experimental study, this observational study specifically targeted users

who were knowledgeable about the internal logic of autonomous robot systems.

Participants had on average 4 years of experience (σ = 3) programming mobile

robots and thus were likely to have more realistic expectations and reactions to such

systems. Additionally, compared to the previous study’s population, users exhibited

higher propensity toward car automation (µ = 71%, σ = 20% degree of agreement

with “comfort using cruise control”), and also had more operational experience

with gamepads (µ = 76%, σ = 20% “competence”), radio-controlled vehicles

(µ = 63%, σ = 18% “competence”), and visually teleoperated systems (µ =

60%, σ = 19% “competence”). Despite their expertise toward robotics, participants

had geographically diverse backgrounds and were affiliated with 7 universities in 4

separate time zones across Canada.

4.3.2 Infrastructure

In this observational study, our APEX-enabled adaptive boundary tracking

agent steered a simulated drone via the SightedTurtleSim framework. Using such

91



controlled environments ensured that the starting conditions of each session could

be exactly specified. The simulated framework also provided accurate live perfor-

mance metrics in terms of distances to the specified boundary trajectories.

Nevertheless, contrary to our previous experimental study as well as to similar

human-robot trust studies [23], neither the robot agent nor the scenes (generated

from satellite footage) were manipulated during task scenarios. This observational

approach ensured that the recorded experiences would remain as faithful as possible

to real-world conditions, given its main purpose serving as training and evaluation

datasets for our subsequent real-time trust modeling efforts.

Figure 4–7: The display interface for the real-time trust dynamics study mostly
resembled the camera view from the previous event-centric trust changes study.
This view depicted the detected boundary (blue line), steering commands from the
robot agent and human (as blue/green arrows), as well as text overlays denoting the
session ID, the current task goal, and the tracking performance score.

We developed a fully automated study infrastructure that included robust mon-

itoring capabilities and provided visual warnings whenever the robot deviated away
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from the specified boundary task. If the participant failed to recover promptly, the

interaction session would then reset to a previous checkpoint state.

The display interface was incrementally modified from our previous study and

again presented an augmented camera view, as shown in Figure 4–7. Following

user feedback from the event-induced trust changes study, the boundary curve was

no longer shown on screen to reduce visual clutter. Additionally, the input interface

was modified, following previous study feedback, from a mouse-based scheme to

a gamepad-based modality. We employed the same gamepad control scheme used

during the evaluations of APEX-enabled adaptive robot agents.

We emphasized the importance of the usability of this control interface, es-

pecially since participants were asked to provide dynamic critiques on the robot’s

performance. Toward this end, we decorated the gamepad with adhesive labels, as

shown in Figure 4–8. Furthermore, instead of holding down an explicit button to

engage intervention, the supervisor could now steer manually simply by pushing

the analog stick in the desired direction, and cede control back to the robot agent

by releasing the stick.

The purpose of this observational study was to record many instances of typ-

ical human-robot interaction experiences. Every time the boundary tracking agent

processed a camera frame, we logged whether it had failed to detect any bound-

aries (i.e. “agent failures” reflecting task performance p ∈ {0, 1}), and the human’s

Figure 4–8: Gamepad interface
for the real-time trust dynam-
ics study included additional la-
bels annotating the analog stick
for manual interventions use
(steer), as well as buttons
for issuing trust change critiques
(t+, t=, t-).
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intervention state i ∈ {0, 1} at that time. We also noted frames in proximity to

a change-over between boundary targets, corresponding to external intervention

causes e ∈ {0, 1}.

We separated multiple study scenarios into minute-length interaction sessions.

During pauses between sessions, the user was asked to report on their current trust

state f ∈ [0, 1]. This feedback served as vital ground truth data, for training as well

as for evaluating our modeling efforts on predicting real-time trust dynamics. In

light of previous study feedback that reported difficulty in quantifying trust states

temporally, we modified the VAS answer scale by adding labeled anchors, thus

turning it into a continuous Likert-like scale. Although the resulting format, shown

in Figure 4–9, has potentially distorted metric properties of the original VAS scale,

this format was designed to improve the practicality in repeated user responses as

well as to mitigate concerns of end-aversion bias [18].

Figure 4–9: The post-session trust feedback in the real-time trust dynamics study
extended the VAS format with mid-anchor points to facilitate repeated responses.

Despite improvements to the trust feedback format, we sought to minimize

such queries in order to reduce disruptions from the primary task and mitigate added

mental strain. Inspired by existing human-robot studies [23, 53], we asked users to

report changes in their trust state during interactions using gamepad buttons that

indicated whether trust has been gained, lost, or remained unchanged, i.e. c =

{+1,−1, 0}. Additionally, the interface encouraged reporting these trust critiques

c at 5 − 10 second intervals, both by using visual feedback (with a “t?” icon in

Figure 4–7) as well as vibrating the gamepad.
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Our study design incorporated gamification elements [95] to incentivize user

participation and attention. A numerical score was shown during interaction ses-

sions to reflect the boundary tracking task performance. This score was computed

from the accumulated area covered around the specified boundary in each scenario,

although the score accrued at a reduced rate of 10% during interventions. Further-

more, each time the session state was reset due to prolonged and excessive deviation

from the target boundary, a fixed penalty was deducted from the score. This mea-

sure was designed to encourage the user to be attentive and intervene when the

robot agent performed poorly, yet also penalize those users who teleoperated the

robot even when it was capable of tracking the specified boundary targets. At the

end of the study, users could optionally submit their final score to a public leader-

board as a competitive incentive for subsequent study participation. Importantly,

this score information was not used in our subsequent real-time trust modeling ef-

forts, as its purpose was solely to motivate user engagement and attentiveness.

This study featured two extensive task scenarios that were divided into minute-

length sessions. The first scenario originated from the APEX aerial coverage study

and comprised of three terrain boundaries of varying tracking difficulty: a straight

highway, a narrow forest path, and a curvy coastline. To complement these tasks,

we also devised a flight trajectory around a fjord, featuring watery inlets with

visually-distracting side-veins, as well as blurry contours involving icy channels,

barren plains, and snow-covered hillsides. These boundary targets were chosen

specifically to be more visually challenging than the previous scenario.

4.3.3 Procedure

The flowchart for this study is shown in Figure 4–10. Following a demograph-

ics survey, a short slideshow described the study’s purpose and boundary tracking

task, and also explained elements of its visual and control interfaces. As in all of
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Figure 4–10: Flowchart for the real-time trust dynamics study.

our studies, the tutorial verbosely discussed performance-centric versus intention-

centric facets of trust assessment, and asked users to assume away intention-centric

bases. The user then worked through an interactive tutorial and 2 practice sessions

to familiarize with the tracking tasks, input interface, and trust feedback queries.

After these practice sessions, the study explicitly announced the start of the

main interaction sessions. A total of 10 recorded sessions ensued, which comprised

of a 3-session highway-forest-path-coastline scenario followed by a 2-session inlet-

mountain-inlet fjord scenario, and then followed by repeats of both scenarios again.

All participants experienced these task sessions in the same order, both since the

practice sessions were designed to mitigate initial learning effects, and because the

study was primarily aimed at collecting interaction experiences rather than assess-

ing the effects of manipulated events.
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4.3.4 Results and Discussion

This section reports on several descriptive analyses of the recorded study dataset,

as well as post-study feedback from participants. Both forms of findings along

with the interaction dataset itself will have major influences toward shaping the el-

ements, structure, and instantiations of our real-time human-robot trust modeling

efforts, which will be elaborated in Chapter 5.

Temporal Traits of User Behavior and Trust

The 2 task scenarios were each instantiated twice during each study run to

assess whether users behaved consistently in similar situations. No significant dif-

ferences in the rate of human interventions i per matching sessions were found

(2-tailed paired t104 = 1.49, p = 0.14), and the numerical sum of trust change

critiques c across session pairs also did not reveal any significant differences (2-

tailed paired t104 = −0.43, p = 0.67). In contrast, trust feedback f were found

to be noticeably different when users repeated the same scenarios (1-tailed paired

t104 = −4.85, p� 0.01).

These results suggest that users reacted consistently to similar events, yet their

trust assessments changed over time as they accumulated more interaction experi-

ences. Therefore, our findings substantiate the need to model temporal dynamics

toward accurately predicting the supervisor’s trust state during interactions.

Impacts of Interaction Factors on Trust

A linear regression on trust feedback f was carried out to identify significant

covariates from the interaction experience. An analysis of variance showed that

both the user identifier (F20,188 = 17.4, p� 0.01) and the ratio of user interventions

i per session (F1,207 = 76.2, p � 0.01) were significantly correlated with trust

feedback f , whereas the ratio of agent failures per session was related to a lesser

degree (F1,207 = 3.02, p = 0.08).
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The strong dependence of trust feedback on each user’s interventions supports

the need for a personalized trust model. This finding is also consistent with results

from our event-induced trust changes study and has been corroborated by other

human-robot studies as well [23]. Our real-time trust dynamics model in Chapter 5

will explicitly account for the dominant effects of user interventions over the robot

agent’s performance estimates on trust in its model structure.

User Feedback

Participants provided several useful remarks in their debriefing questionnaire

that reflected vital insights about the evolution of their trust state in the robot’s task

performance. Several users indicated that their “trust changed when the robot did

something unpredictable”, which suggests a dependency between the trust state tk

at time k and the change in the robot’s recent task performance, i.e. pk−pk−1. Oth-

ers said that their “trust fluctuated a lot initially” given the lack of prior experiences

with the robot. This suggests that it is sensible to assume a uniform prior belief the

initial degree of trust when interacting with a new autonomous robot system.

During pilot runs of the study, users frequently pressed the “trust gained”

and “trust lost” buttons unintentionally when prompted for c. Consequently, the

slideshow in the final study form explicitly encouraged participants to press the

“trust unchanged” button as a default. Nevertheless, multiple participants reported

that they found it “hard to suppress the urge to press ‘trust gained’ or ‘trust lost’”

hastily and recalled making multiple accidental misclicks. This idling bias will

be taking into account in our trust dynamics model, specifically in quantifying the

relationship between the latent trust state tk and trust change critiques c.

4.4 Summary

In this chapter, we collected a large corpus of interaction experiences from a

wide range of roboticists and enthusiasts, who collaborated with our robot agents
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in a variety of scenarios. Analyses of these datasets revealed the following charac-

teristics of trust for asymmetric supervisor-worker human-robot teams:

1. Trust feedback assessments were correlated with each supervisor’s personal-

ity and propensity dominantly, while factors emerging from the interaction

experience had notably less influence.

2. Among experience-based factors, the supervisor’s intervention frequency was

more strongly correlated with trust feedback than the robot agent’s internal

failure assessments.

3. When the agent misbehaves, the human supervisors’ reactions and trust as-

sessments were consistent with rational responses based on the cause of the

misbehavior, (e.g. lack of initial training, versus limitation of agent capabili-

ties, versus inexplicable failure).

4. Although supervisors exhibited consistent reactions to similar events, their

trust states evolved differently during repeated scenarios.

5. Supervisors reported difficulty in confidently providing initial trust assess-

ments due to lack of hands-on experience with a new robot agent.

All of these findings along with their raw interaction datasets will directly

contribute to the development of a data-driven model of trust dynamics, as well as

an associated online computation engine. The two interaction studies also gave us

opportunities to improve the quality of the user interface and the automated study

infrastructure, both via pre-study testing, as well as post hoc user feedback. Our

trust dynamics modeling efforts discussed in the next chapter will ultimately enable

autonomous robot agents to be able to sense and react to their human supervisor’s

trust state toward maintaining effective partnerships.
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Chapter 5
Real-Time Human-Robot Trust Modeling

In this chapter, we present OPTIMo: an Online Probabilistic Trust Inference

Model for inferring the human’s moment-to-moment trust state during interactions

with an autonomous robot agent. This computational model formulates Bayesian

beliefs about the supervisor’s latent trust state based on recently observed interac-

tion experiences. A separate model instance is trained on each supervisor’s expe-

riences and assessments, leading to an interpretable and personalized characteriza-

tion of that individual’s behaviors and attitudes.

These trust modeling efforts correspond to the second stage in our three-stage

plan for realizing trust-seeking robots. An important model design requirement is

the ability to predict the supervisor’s trust state at frequent intervals, as trust infor-

mation “in general varies very rapidly” [13]. This real-time attribute also enables

the robot agent to react responsively to the human’s trust changes toward actively

maintaining efficient teamwork.

This chapter begins with a discussion on our modeling approach for predicting

real-time trust dynamics. We next describe OPTIMo’s core elements, including its

model structure, its data preprocessing procedure, its inference and training mecha-

nisms, as well as details on a concrete model implementation. Based on the dataset

from our trust dynamics study (see Section 4.3), we also delve into a detailed eval-

uation of OPTIMo that includes an exposition of a model instance and its trust
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inference outcomes, as well as an investigation into the impacts of configurable pa-

rameters of this model. We further present a quantitative comparison with respect

to several existing trust models and demonstrate that trained OPTIMo instances can

predict each human supervisor’s reported trust feedback with greater accuracy and

at faster time scales compared to previously proposed methods.

5.1 Methodology

As highlighted in Section 2.4, our research considers the supervisor’s trust

state as a continuous and bounded value, spanning complete distrust and absolute

trust. We take a performance-centric trust modeling approach that is predicated on

two simple observations of supervisor-worker human-robot teams. Firstly, we note

that the robot agent’s trustworthiness arises due to its task performance: good per-

formance and progress should lead to greater trust, whereas low reliability would

likely induce trust loss. Secondly, we have observed that when the human inter-

venes, it often reflects a lapse in trust due to the robot’s task failures.

These observations adhere to separate approaches for modeling trust, through

causal reasoning about the agent’s expected trustworthiness [56], and by incor-

porating user-provided evidence into an estimate of the true trust state [23]. By

combining both the agent’s own performance estimates and the human’s reactions

and feedback into a single computational framework, our work aims to unify both

types of existing trust modeling approaches.

Formally, our modeling effort addresses the problem of estimating the human’s

trust state tk ∈ [0, 1] regarding the robot agent at various time steps k ∈ [1, K]

during their interactions. We address this problem by estimating a probability dis-

tribution (or “belief”) over this latent trust signal, and by updating the belief over

time through correlations with other observable factors. Similar to our regression-

based modeling efforts in Section 4.2.5, we focus solely on trust factors that are

obtainable during deployment. This approach ensures that we can train our model
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to predict trust feedback from unseen users by simply observing an initial period of

their interactions with the robot and without administering lengthy questionnaires.

The various trust factors under consideration include the well-established link

between trust and the robot’s instantaneous task performance p [23, 56]. The robot

agent can estimate task performance by noting the rate of its algorithmic failures.

Another important factor is the intervening state i, which reflects whether the su-

pervisor is currently intervening or not. This signal has been shown to strongly cor-

relate with the human’s trust state, as demonstrated by our user studies (Chapter 4)

and in the existing literature [23, 63]. We additionally consider external factors e

that may cause the operator to intervene irrespective of trust, such as when the user

switches the task target by steering the robot along a new terrain boundary. Finally,

our modeling approach incorporates several types of assessment-based factors from

the human supervisor, including trust change critiques c that acknowledge task suc-

cesses and mistakes, as well as questionnaire-based trust feedback f that quantify

their current trust state at different moments during the interaction.

5.2 Online Probabilistic Trust Inference Model (OPTIMo)

(a) first time step (b) general form

Figure 5–1: Our Online Probabilistic Trust Inference Model (OPTIMo) is repre-
sented using a Dynamic Bayesian Network. Dashed circles in this graph structure
depict optional interaction factors that are not observed on all time steps k.
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OPTIMo’s structure is represented as a Dynamic Bayesian Network [54] and

is shown in Figure 5–1. This graph structure efficiently encodes local relationships

between the human’s latent trust state tk and related factors, as well as the temporal

dynamics of trust itself. The Bayesian Network formulation also has the advan-

tage of being able to process interaction factors that are observed at different time

scales in a mathematically sound manner. Furthermore, by using a probabilistic

representation for trust estimates, OPTIMo can capture useful traits such as the ex-

pected trust state at a given time and the degree of uncertainty associated with each

estimate.

5.2.1 Data Preprocessing
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Figure 5–2: Window-based preprocessing of interaction factors for the Online Dy-
namic Probabilistic Trust Inference Model (OPTIMo).

As illustrated by Figure 5–2, OPTIMo discretizes a continuous period of in-

teraction into a sequence of K non-overlapping time windows, k = 1: K, each

lasting W seconds. The window-aggregated state of task performance pk ∈ [0, 1]

is computed as the ratio of frames within the k-th window for which the agent
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failed to produce any commands. ik ∈ {0, 1} is asserted when the supervisor inter-

venes at some point during the kth time window. Similarly, the external cause state

ek ∈ {0, 1} records the presence of a change in task target during step k.

If the supervisor reports one or more trust change critiques c during a time

window k, then these values are summed and transformed into a single critique

value ck ∈ {−1, 0,+1,∅} using the sign function:

sgn (Σ) :=


+1, if Σ > 0

0, if Σ = 0

−1, if Σ < 0

This mapping identifies the dominant critique value in each time window and is

especially useful in cases where the user reports conflicting critiques {c} in quick

succession due to the volatility in their trust assessments.

Finally, since trust feedback instances f are expected to occur infrequently, we

assume that each time step has at most one feedback value fk ∈ {[0, 1],∅}.

5.2.2 Local Trust Relationships

Each edge in OPTIMo’s graph structure represents a relationship between the

latent trust state tk to a related factor and is modeled as a conditional probability

distribution (CPD). These relationships have all been previously corroborated in

the literature [23,56] as well as by our empirical studies in Chapter 4. For instance,

our observational study on real-time trust dynamics found that user interventions

i were much more strongly correlated with trust than the robot’s task performance

estimates p. Consequently, OPTIMo uses pk to propagate the trust belief tk to a

set of plausible next states, whereas human-provided assessment factors ik, ck, fk

are then used to exclude inconsistent trust hypotheses. The links from pk to tk to

assessment factors also reflect a natural and causal depiction of the supervisor’s

decision process that is driven by trust internally.
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We now explore each of these local relationships in turn. For instance, we use

a bounded linear Gaussian CPD to model the amount for which trust tk is expected

to change given the robot’s recent and current performance estimates pk−1, pk:

µtk := tk−1 + ωtb + ωtp pk + ωtd (pk − pk−1)

P(tk, tk−1, pk, pk−1) := Prob(tk|tk−1, pk, pk−1) = (5.1)

N (tk;µtk , σt)

Φ (1;µtk , σt)− Φ (0;µtk , σt)

where N (x;µ, σ) := 1√
2πσ

exp
(
−(x−µ)2

2σ2

)
and Φ (x;µ, σ) :=

∫ x
−∞N (y;µ, σ) dy

denote the Gaussian probability distribution and cumulative distribution, respec-

tively, for the random variable x with mean µ and standard deviation σ. The mean

expression µtk of this bounded Gaussian CPD represents the expected update to

trust tk from its previous state tk−1 as a weighted sum expression. The personal-

ized parameters ωtb, ωtp, ωtd reflect the relative impacts on each user’s trust updates

of the bias, the current task performance, and the difference in the robot’s perfor-

mance. The propagation uncertainty parameter σt quantifies the variability in each

user’s trust update dynamics.

The propagation step expands the range of hypotheses of potential trust states

that are consistent with the robot agent’s latest performance estimate. To narrow

down the possibility of propagated hypotheses, the model checks if each candidate

state is consistent with the human’s latest reactions (i.e. ik) and assessments (i.e. ck,

fk). OPTIMo explains the likelihood of interventions ik based on several potential

causes, such as the current trust state tk, a recent change in trust ∆tk := tk − tk−1,

and external intervention causes ek. These linkages are modeled as a logistic CPD:
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Oi(tk, tk−1, ik = 1, ek) := Prob(ik = 1|tk, tk−1, ek) = (5.2)

S (ωib + ωit tk + ωid∆tk + ωie ek)

Prob(ik = 0|tk, tk−1, ek) = 1− Prob(ik = 1|tk, tk−1, ek)

where S(x) := (1 + exp (−x))−1 is the sigmoid distribution for the binary random

variable x. The parameters ωib, ωit, ωid, ωie separately account for the likelihood of

intervention ik = 1 arising from personal bias (i.e. predisposition to micromanage),

low trust, drop in trust, and external factors (e.g. switching task targets; wind

perturbation).

During time steps when the user reports trust changes ck ∈ {−1, 0,+1}, these

are accounted as evidence to ground the latest update to latent trust, ∆tk. The like-

lihoods of observing a “trust gained” or “trust lost” critique are modeled as sigmoid

CPDs, while the “trust unchanged” likelihood is implicitly defined via exclusion:

Oc(tk, tk−1, ck) := Prob(ck|tk, tk−1)

Prob(ck = +1|tk, tk−1) = βc + (1− 3βc) · S (κc [∆tk − oc])

Prob(ck = −1|tk, tk−1) = βc + (1− 3βc) · S (κc [−∆tk − oc])

Prob(ck = 0|tk, tk−1) = 1− Prob(ck = +1|tk, tk−1) (5.3)

− Prob(ck = −1|tk, tk−1)

These CPDs parametrize the nominal offset oc in a change to latent trust ∆tk that

is likely to cause the user to report a non-zero ck, along with the variability κc

in the reporting likelihoods. The uniform error term βc accounts for the idling

bias identified in our observational study on trust dynamics, in which users hastily

pressed wrong critique buttons when prompted. The effects of these parameters on

the resulting sigmoid CPD are depicted in Figure 5–3.
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Finally, OPTIMo uses a bounded Gaussian CPD to quantify the degree of un-

certainty σf between the user’s latent trust state tk and their trust feedback fk:

Of (tk, fk) := Prob(fk|tk) =
N (fk; tk, σf )

Φ (1; tk, σf )− Φ (0; tk, σf )
(5.4)

5.2.3 Inference, Personalization, and Prediction

OPTIMo’s main purpose is to infer the probability that the human’s trust state

tk ∈ [0, 1] at a given time step k takes on a particular value. Two types of trust

inferences are of particular interest: firstly, the filtered belief estimates the trust

state at the current time step k in an online fashion based on a history of past

experiences, i.e. belf (tk) = Prob(tk|p1:k, i1:k, e1:k, c1:k, f1:k, t0). In contrast, given

a sequence of recorded experiences, the smoothed belief at any time step k ∈ [0, K]

can be computed offline by incorporating interaction factors that occurred both prior

and after k, bels(tk) = Prob(tk|p1:K , i1:K , e1:K , c1:K , f1:K , t0).

We derived expressions for both inference processes based on OPTIMo’s graph

structure through repeated applications of Bayes’ rule, simplifications using the

Markovian assumption, and variable marginalization [97]. These derivations re-

sulted in succinct recursive definitions for the filtered and smoothed beliefs, which

both depend on a joint likelihood expression for successive latent states bel(tk, tk−1):
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bel(tk, tk−1) := O(tk, tk−1, ik, ek, ck, fk)

· P(tk, tk−1, pk, pk−1) · belf (tk−1) (5.5)

belf (tk) =

∫
bel(tk, tk−1) dtk−1∫∫
bel(tk, tk−1) dtk−1dtk

(5.6)

bels(tk−1) =

∫
bel(tk, tk−1)∫

bel(tk, tk−1) dtk−1

· bels(tk) dtk (5.7)

where O(tk, tk−1, ik, ek, ck, fk) denotes the product of Oi (·) with possibly Oc (·)

and/or Of (·), depending on whether ck 6= ∅ and/or fk 6= ∅.

Both the filtering and smoothing algorithms have efficient runtime complex-

ities that are linear in terms of the number of time steps K. The filtered be-

lief belf (tk) in Equation 5.6 is updated recursively from its previous distribution

belf (tk−1); a similar recursive relationship also holds for the smoothed belief bels(tk)

in Equation. 5.7. Therefore, starting from a given prior trust belief belf (t0), one can

compute filtered beliefs belf (tk) forward in time in a single pass, and then sequen-

tially ascertain smoothed beliefs bels(tk) backward in time.

Our OPTIMo implementation uses an uniform prior trust belief, belf (t0) :=

Prob(t0) = 1, which enforces the assumption that the human supervisor has uni-

form prior trust when interacting with a robot agent for the very first time. This

assumption was substantiated by feedback from our trust dynamics study, where

participants expressed difficulty in confidently providing initial trust assessments

prior to any interactions with the robot.

Most parameters of OPTIMo’s CPDs aim to capture the supervisor’s behaviors

and trust tendencies. These personalized parameters Θ include trust propagation

settings {ωtb, ωtp, ωtd}, intervention likelihood weights {ωib, ωit, ωid, ωie}, and pa-

rameters for the trust change likelihood {oc, κc, βc}. OPTIMo also has a few param-

eters that do not capture personalized tendencies, such as the window duration W ,
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the trust propagation variability σt, and the trust feedback uncertainty σf . The win-

dow duration W determines this model’s time scale, and should be set accordingly

(e.g. to obtain real-time second-scale updates or capture minute-scale dynamics).

σt reflects the amount of variability in the change in trust over consecutive time

steps, and is affected both by the time window duration W and by the pace of the

task for the human-robot team. σf captures the degree of uncertainty between the

latent trust state tk and a noisy trust feedback fk obtained via questionnaire.

We tailor personalized OPTIMo instances for each individual user by optimiz-

ing the parameters Θ based on a training set of their interaction experiences. This is

achieved using the hard-assignment Expectation-Maximization (“Hard EM”) algo-

rithm [54]. Hard EM jointly optimizes the observational likelihood of the training

data and the most likely sequence of latent trust states, as follows:

Θ∗ = arg max
Θ

max
t1:K

Prob(t1:K , p1:K , i1:K , e1:K , c1:K , f1:K |t0)

In addition to inferring trust beliefs, OPTIMo can also be used to predict

probability distributions for the observed factors ik, ck, fk. Expressions for these

predictive beliefs are derived in the same manner as filtering and smoothing pro-

cesses [97]. For instance, when targeting the intervention state, we first omit all

observed instances i1:k from consideration, and then predict the likelihood that ik

will take on a particular value as:

Prob(ik|p1:k, e1:k, c1:k, f1:k) = (5.8)∫∫
Oi(tk, tk−1, ik, ek) · bel(tk, tk−1) dtk dtk−1∫∫

bel(tk, tk−1) dtk dtk−1

5.2.4 Histogram Inference Engine

We implemented OPTIMo using a histogram-based inference method [91],

which approximates continuous belief densities as discrete vectors of probability

masses. Specifically, the bounded interval [0, 1] for the trust state is discretized into
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B equally spaced bins, where the likelihood of tk taking on a particular value is

approximated as the probability mass of the nearest bin center. The precision of

this histogram approximation improves when using larger bin sizes B at the cost

of additional computations. We also used this histogram approximation to predict

trust feedback fk ∈ [0, 1], by dividing the range into 100 bins1 and computing the

probability masses of each bin’s center using a form similar to Equation 5.8.

We personalized model instances using EM with multiple restarts to avoid

convergence to local optima. In each EM run, randomly-initiated model param-

eters Θ are iteratively improved using constrained least squares optimization. In

each E-step, we calculate the smoothed trust beliefs at all time step k = 1 : K, and

then compute their expected values E(bels(tk)). In the following M-step, we up-

date model parameters using an off-the-shelf non-linear optimization solver. This

iterative process is terminated when parameters have stabilized within expected tol-

erances or after a maximum number of iterations have lapsed.

5.3 Experimental Validation

We carried out several empirical assessments to quantify the performance of

OPTIMo, using the recorded interaction dataset from the 21 participants of our

observational study on trust dynamics (Section 4.3). In this section, we present a

visualization of the inference process and outputs of a trained OPTIMo instance,

and also highlight several features of this human-robot trust model. We also study

the effects on OPTIMo’s performance of its non-personalized model parametersW ,

B, σt, and σf . Finally, the next section will present a quantitative comparison of

OPTIMo against several existing temporal trust models.

1 Sensitivity analysis found negligible differences in prediction accuracies be-
yond 100 bins; we thus chose this bin size to expedite the computation runtime.
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5.3.1 Procedure

Since we assume that the human’s trust state tk is latent and therefore not

directly observable, we evaluate OPTIMo based on the accuracies in its predic-

tions for intervention states ik, trust change critiques ck, and absolute trust feedback

fk. Given specific values for OPTIMo’s non-personalized parameters, we train and

evaluate model instances for each study participant’s dataset individually. This pro-

cess begins by preprocessing raw interaction experience into W -second windowed

aggregates. We then optimize model parameters Θ using a training set consist-

ing of experiences from the first 5 study sessions, while assuming uniform prior

trust. Next, we separately predict the factors i1:k, c1:k, and f1:k within the test set,

comprising of the remaining 5 study sessions, while using the last inferred trust

belief from the training set as prior. Finally, we determine Maximum Likelihood

Estimates (MLE) from the predictions of intervention, critique, and trust feedback

factors, and compare these estimates against user-reported values.

The metrics of this evaluation process include prediction accuracies for inter-

vention states and trust change critiques, acci, accc ∈ [0%, 100%]. MLE predictions

for trust feedback are also evaluated using the root-mean-squared-error RMSEf

and the Pearson product-moment correlation coefficient ρ. This latter metric is par-

ticularly useful for comparing OPTIMo against trust models that use different (e.g.

unbounded) representation scales.

5.3.2 Characteristics of a Trained OPTIMo Instance

We begin by studying the features of a typical OPTIMo instance, which was

trained on one study participant’ dataset. This model instance was configured with

the following settings: W = 3 s, B = 300 bins, σt = 0.005, σf = 0.1. Fig-

ure 5–4a depicts time-aggregated factors from the 5 training sessions, as well as the

resulting smoothed trust beliefs bels(tk) during this interval. Similarly, Figure 5–

4b shows the filtered trust beliefs belf (t) during the subsequent 5 test sessions, as
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well as Maximum Likelihood Estimate (MLE) predictions for trust feedback fk,

user interventions ik, and trust change critiques ck. The switch from smoothing to

filtering allows the model to be evaluated in an online manner as if the inferences

and predictions were computed live during the test sessions.
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Figure 5–4: Visualizations of a trained OPTIMo instance (W = 3 s, B = 300
bins, σt = 0.005, σf = 0.1): OPTIMo takes as input time-aggregated factors
from the interaction experience, including the agent’s task performance estimate pk,
the supervisor’s intervention state ik, external intervening factors ek, trust change
critiques ck, and trust feedback fk; model parameters are batch-optimized using EM
based on training dataset; outputs of OPTIMo comprise of batch-smoothed trust
beliefs bels(tk), online-filtered beliefs belf (tk), and MLE predictions for fk, ik, ck.

The inferred trust beliefs, each shown as a vertical slice in Figure 5–4, reflect

a precise characterization of this user’s trust tendencies, as seen from accurate test-

set prediction results: RMSEtest
f = 0.09, acctesti = 72%, acctestc = 70%. Also,

despite only having 5 trust feedback values each for training and evaluation, test-

set predictions of fk achieved strong correlation ρ = 0.91 (p < 0.01).

These visualizations further highlight OPTIMo’s unique ability in quantify-

ing multi-modal beliefs of a person’s trust state. These competing hypotheses may

arise due to momentary contradictions among observed factors pk, ik, ck, fk. For
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instance, consider a situation where the agent repeatedly fails at tracking the bound-

ary task, yet the supervisor inattentively continues to report “trust gained”. Multi-

modal distributions may also occur when the user’s reactions are notably different

from historical experiences. As result of this multi-modal trait, it is preferable to

reason about changes in the human’s trust state by comparing the expected values

of the inferred beliefs rather than their modes, since the latter signal may exhibit

sudden discontinuous jumps.

Table 5–1 enumerates the trained parameter values for this personalized OP-

TIMo instance. We can derive meaningful characterizations of this human supervi-

sor’s particular trust tendencies by first substituting these parameters into the CPDs

reflecting local trust relationships in Section 5.2.2 and then considering assorted

scenarios for the evolution of the trust state.

Table 5–1: Personalized parameter values from an OPTIMo instance trained on a
single study participant’s dataset.

Trust Propagation
ωtb = −0.0089 ωtp = 0.0153 ωtd = 0.0029

Intervention Likelihood
ωib = 131.2 ωit = −157.1 ωid = −9887 ωie = 83.84

Trust Change Likelihood
oc = 0.0003 κc = 1277 βc = 1.063× 10−7

Non-Personalized Parameters
W = 300 s B = 300 bins σt = 0.005 σf = 0.1

To illustrate this process, let us consider different ways that the intervention

likelihood CPD in Equation 5.2 will predict that this user will intervene with near

certainty, i.e. Prob(ik = 1|tk, tk−1, ek) ≈ 1. For instance, suppose that the trust

state is stationary but less than maximal (tk = tk−1 = 0.8), and assume that there

is currently no external cause for intervention (ek = 0), then we can compute the

output of the CPD as:

Prob(ik = 1|tk = 0.8, tk−1 = 0.8, ek = 0) = S (131.2 + (−157.1) · 0.8) = 0.9960
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Alternatively, this OPTIMo instance will also predict high intervention likelihoods

when the user’s trust changes by∆tk = −0.004, or when he is intentionally switch-

ing between task targets (ek = 1, tk = tk−1 = 1).

By applying similar procedures, we can compare hypothetical values for the

current trust state tk against the mean estimate µtk from the trust propagation CPD

in Equation 5.1. Consequently, we note that between successive time steps of W =

3 s, this OPTIMo instance will make the following predictions:

• trust will increase by 0.0064 when the agent performs well (pk = pk−1 = 1);

• trust will drop by 0.0118 upon an initial agent failure (pk = 0, pk−1 = 1);

• trust will continue to drop by 0.0089 (pk = pk−1 = 0) until the agent recovers.

Based on the interpretations above, our OPTIMo instance suggests that this su-

pervisor will penalize agent failures with 38% more trust loss in comparison to

the amount of trust gained during competent operations. We anecdotally observed

similar attitudes among many other study participants, which naturally reflect the

age-old adage that “it is easy to lose trust, but hard to regain it”.

5.3.3 Effects of Non-Personalized Parameters

Next, we investigated the effects of different non-personalized model parame-

ters on OPTIMo’s predictive performance. These include the window duration W ,

which dictates the model instance’s time scale and also reflects the interval between

successive trust inferences. The number of histogram binsB affects the precision of

the discrete approximation to the underlying continuous trust beliefs. The variabil-

ity in propagated trust states σt captures the degree of volatility in successive trust

updates. This parameter is affected by both the natures of the task and the interac-

tion context as well as the chosen time scale W for an OPTIMo instance. Finally,

σf represents the amount of uncertainty that relates trust feedback values fk to the

latent trust state tk, and accounts for the noise associated with the questionnaire

answer format used to elicit fk.
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Figure 5–5: Means and standard deviations (as error bars) of OPTIMo’s pre-
diction performances as functions of the window duration parameter W (with
B = 300 bins, σt = 0.005, σf = 0.1).

Figure 5–5 illustrates the effects of the time window durationW on OPTIMo’s

performance. Both the magnitude and variance of prediction errors for trust feed-

back RMSEf consistently decreased for wider window periods. This trend can be

attributed to the availability of frequent fk observations at coarser time scales, thus

ensuring that trained trust dynamics tk can more accurately predict fk. In contrast,

prediction accuracies for ik and ck dropped slightly as W increased from a 1 s scale

to the 10−20 s range. The model’s decreased performance likely resulted from hav-

ing fewer training exemplars, after the raw per-frame i and per-report c occurrences

were collapsed into fewer time-aggregated states. This potential cause also explains

the increase in prediction accuracies at the session-wide scale of W = 150 s as a

result of statistical degeneracy.

The opposite effects of W on predictions for fk, versus those for ik and ck,

reflects the natural contrast between absolute trust states summarizing cumulative

experiences, versus the event-reactive natures of interventions and trust change cri-

tiques. This contrast is commonly seen in human-robot interactions, as reflected by
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the observed difference between trust assessments versus user reactions in our ob-

servational study on trust dynamics, as well as differences seen in related studies be-

tween a cumulative trust scale TrustMuir and a real-time measure TrustAUTC [23].

The fact that our results captured this contrast demonstrates OPTIMo’s versatility.

Furthermore, despite having worse RMSEf results for sub-second time win-

dows (e.g. W = 0.5 s), competent prediction accuracies for ik and ck nevertheless

reflect the usefulness of the inferred trust beliefs at these extremely fine time scales.

More importantly, all three metrics revealed OPTIMo’s exceptional prediction per-

formances at the W = 3 − 5 s range. This degree of prediction responsiveness is

unseen in existing trust models, which operated at much coarser scales of tens of

minutes or longer [23, 56].

We take a brief tangent here to highlight the strict nature of the accc met-

ric, which only accredits exact predictions of each tri-valued trust critique state

ck ∈ {−1, 0,+1}. All of the accc results in this section are notably better than

the chance outcome of 0.33, although admittedly OPTIMo has limitations in accu-

rately modeling the complex dynamics of trust critiquing. Specifically, providing

critiques at regular intervals imposes added mental strain on top of the human’s task

supervision and intervention duties, and therefore is dependent on each individual’s

communication propensity and multi-tasking capacity.

Figure 5–6 shows the effects of using histograms with different bin sizes B.

Prediction performances were mediocre and unstable among among small bin sizes

(B ≤ 150), and were likely due to under-sampling of the continuous trust space.

For instance, the trained model in Section 5.3.2 indicated that the user’s latent trust

tk increased nominally by 0.0064 between time steps under typical operations; this

would require at least B > 156 bins to represent faithfully. Aside from under-

sampling errors, our empirical results showed that using a large number of bins
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Figure 5–6: Means and standard deviations (as error bars) of OPTIMo’s prediction
performances as functions of the number of histogram bins B (with W = 3 s,
σt = 0.005, σf = 0.1).

did not lead to greater performance. We therefore conclude that a histogram with

B = 300 bins can sensibly capture beliefs for a typical person’s trust dynamics.
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Figure 5–7: Means and standard deviations (as error bars) of OPTIMo’s prediction
performances as functions of the trust propagation variability parameter σt (with
W = 3 s, B = 300 bins, σf = 0.1).

It is technically possible to optimize the variability parameter σt along with the

other trust propagation settings {ωtb, ωtp, ωtd} based on each supervisor’s recorded

experience using EM. Nevertheless, we anecdotally observed that this type of ev-

idence maximization approach tended to result in overly confident values for σt

and ultimately poor model performance. Therefore, we opted to manually tune this

parameter across all users for our boundary tracking task domain.
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Figure 5–7 shows that the trust propagation variability parameter σt had neg-

ligible effects on the predicted accuracies of interventions and critiques acci, accc.

On the other hand, OPTIMo instances with larger σt values exhibited worse mean

and spread in their trust feedback prediction errors RMSEf . This phenomenon

suggested an empirical mismatch of larger sampled σt settings against our fast-

paced boundary tracking task context, as well as the magnitudes of typical changes

in consecutive trust states as illustrated in Section 5.3.2. Thus, all subsequent OP-

TIMo instances for boundary tracking tasks were configured with σt = 0.005, cor-

responding to the best demonstrated results.
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Figure 5–8: Means and standard deviations (as error bars) of OPTIMo’s predic-
tion performances as functions of the trust feedback uncertainty parameter σf (with
W = 3 s, B = 300 bins, σt = 0.005).

In general, it is difficult to estimate the amount of variability of introspected

reports on an unmeasurable sentiment such as trust. Since we employed a 5-anchors

format to elicit trust feedback tk ∈ [0, 1] (see Figure 4–9), a conservative variabil-

ity estimate can be derived from the half-width between consecutive anchors, i.e.

σf = 0.1. Figure 5–8 showed that model instances trained with different σf val-

ues had minimal overall effects on OPTIMo’s performance metrics, with the minor

yet expected exception of worsened trust feedback prediction errors RMSEf for

higher trust feedback uncertainty values σf . Consequently, we decided to maintain

the conservative estimate of σf = 0.1 during subsequent model analyses.
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5.4 Comparisons Among Temporal Trust Models

In addition to the above assessments, we also contrasted OPTIMo against three

other temporal trust models in their ability to predict user-reported trust feedback

fk. These included the Auto-Regressive Moving Average Value (ARMAV) model

for quantifying human-automation trust [56], our stepwise regression model for

predicting event-induced trust changes ∆T (from Section 4.2.5, [103]), and the

Area Under Trust Curve (AUTC) metric [23].

5.4.1 Procedure

Model comparisons were carried out using the same dataset collected during

our trust dynamics observational study, and adhered to the same 5 training session

and 5 test session regime used above. We selected two OPTIMo variants for these

evaluations, both configured with B = 300 bins, σt = 0.005, and σf = 0.1. These

comprised of a fine-grained real-time variant OPTIMofine with W = 3 s, as well

as a coarse-level model instance OPTIMocoarse with W = 150 s.

The ARMAV model [56] predicts the degree of trustworthiness in an auto-

mated system as a linear function of its task performance and internal failure rates

at both the latest and most recent time steps. Three variants of this first-order lag

model were instantiated, including ARMAVonline, which solely considered recent

agent failure rates pk, pk−1. ARMAVperf in contrast added an external performance

metric, measured as the ratio of frames for which the target boundary was com-

pletely out of the robot’s view. This second variant is expected to be more accurate,

although it requires a performance factor that is typically not available during on-

line operations and is therefore not used by OPTIMo. Separate instances for both

model variants were trained on each user’s interaction experiences, while a third,

user-aggregated model form ARMAVaggr was regressed using both agent failure

and external performance data from all study participants. This aggregated instance

most faithfully replicated the original proposed model form.
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During analyses of our event-induced trust changes study, we proposed a linear

regression model similar to ARMAV for predicting session-level trust changes ∆T

induced by various interaction events. In addition to associating the trust state to

agent failures pk, ∆T also added links to the supervisor’s intervention state ik, as

well as to the instantaneous task accuracy as measured by the robot’s distance to the

designated trajectory. Since the latter metric is typically not available during online

operations, we computed per-user regression variants that both ignored (∆Tonline)

and included (∆Tgt) the task accuracy factor as ground truth. Furthermore, a user-

aggregated variant ∆Taggr regressed against interaction experiences from all study

participants. To evaluate these models, predicted trust change values for the 5 test

sessions were successively summed into absolute trust states, starting from the final

trust feedback provided at the end of the training sessions.

During several human-robot studies conducted by Desai and Yanco [23] for

assistive robotic search tasks, participants were asked to report their trust changes

c ∈ {−1, 0,+1} at regular intervals through gamepad button presses. The cumu-

lative sums of these values, termed as the Area Under Trust Curve (AUTC) metric,

were then used to characterize trust states at different times. We computed AUTC

values at the end of each test session, and compared Pearson’s ρ correlations be-

tween user-reported trust feedback fk and these unscaled predictions.

5.4.2 Results and Discussion

The results in Table 5–2 quantify the abilities of different models at predicting

trust feedback values fk reported by the participants of our trust dynamics study2 .

Model prediction performances were evaluated using both the Root Mean Squared

Error (RMSE) metric as well as Pearson’s ρ correlation statistics.

2 OPTIMo’s performance results were updated during extended experiments fol-
lowing the submission of [100].
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Table 5–2: Comparison of OPTIMo against three temporal trust models for pre-
dicting trust feedback fk, assessed using Root Mean Squared Error (RMSE) across
all study participants and Pearson’s ρ for the subset of users exhibiting significant
correlations with their fk values; the top two models under each evaluation metric
are shaded in dark & light green respectively.

Model Variant
avg (std) % sign ρ avg
RMSE (α = 0.10) sign ρ

OPTIMofine real-time (W = 3s) 0.16 (0.06)1 33.33% 0.88
OPTIMocoarse session-wide (W = 150s) 0.12 (0.05)1 33.33% 0.90

ARMAVonline personalized 0.32 (0.42) 9.52% 0.86
ARMAVperf w/ external perf. metric 0.27 (0.21) 9.52% 0.85

ARMAVaggr [56] user-aggregated 0.14 — 0.64

∆Tonline personalized 0.76 (1.68) 9.52% 0.92
∆Tgt w/ ground truth metric 0.36 (0.32) 14.29% 0.93

∆Taggr user-aggregated 0.19 — 0.73

AUTC [23] personalized (unscaled) 38.10% 0.90

At the session-wide time scale, OPTIMocoarse produced the most accurate

trust predictions overall. This model variant notably excelled over competing meth-

ods using similar information sources, namelyARMAVonline, ∆Tonline, andAUTC.

The real-time variant OPTIMofine also attained excellent prediction performance

as well, and was only outperformed by the competing model ARMAVaggr, which

incorporated oracle-provided task performance data. Furthermore, predictions from

both OPTIMo variants were significantly correlated to reported trust feedback val-

ues fk for a large portion of study participants.

These results showed that OPTIMo variants were able to infer trust feedback

values reported by our 21 study participants with greater accuracy and at much finer

time scales compared to existing methods. We attribute these successes to several

key features of OPTIMo, including its ability to update estimates of the latent trust

state at an interaction-time scale, the accounting of the influences of multiple in-

teraction factors on trust dynamics, and the use of a multi-modal probabilistic trust

representation. In contrast, it would be highly impractical to operate regression-

based models such as ARMAV and ∆T at second-level time scales, since they
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would require a training dataset obtained by constantly pestering users to provide

trust feedback every few seconds during their interactions with the robot.

5.5 Summary

This chapter presented the Online Probabilistic Trust Inference Model (OP-

TIMo): a personalized, performance-centric trust model that is capable of inferring

a human supervisor’s degree of trust in an autonomous robot. OPTIMo subsumes

the two dominant trust modeling approaches in the literature, namely through causal

reasoning of the robot’s trustworthiness given its task performance, and by using

evidence from the interaction experience to support beliefs about the human’s la-

tent trust state. Both OPTIMo’s graphical structure and its parametrized relation-

ships were grounded on previous human-robot interaction studies, including in-

sights from our own observational study on real-time trust dynamics.

Our empirical evaluations demonstrated OPTIMo’s success at predicting per-

sonalized trust tendencies, and also identified sensible settings for its non-personalized

parameters. We further showed that OPTIMo could predict trust assessments with

greater accuracies and at much finer time scales compared to existing works. Al-

though these evaluations focused specifically on tasks within the visual navigation

domain, OPTIMo’s use of generalized trust factors such as performance and inter-

vention state allows this model to be scaled and instantiated for other task contexts

as well. In summary, the high accuracy, personalized nature, and real-time infer-

ence attributes of this human-robot trust model are all useful elements contributing

to our ultimate research goal of developing responsive trust-seeking robot agents.
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Chapter 6
Trust-Induced Behavior Alterations

This chapter addresses the final problem in our three-stage plan toward re-

alizing trust-seeking robots: “how should the robot agent react when the human

supervisor’s trust changes?” We focus specifically on situations where the human

loses trust in the agent, as these perceived offenses are of grave importance since

they may cause the supervisor progressively to stop delegating tasks to the agent

and resort to pure teleoperation. To prevent such teamwork breakdowns, the agent

should react to resolve the cause of each trust loss event. In this way, it can actively

work toward maintaining the efficiency of the asymmetric human-robot team.

We approach this problem by identifying different types of potential causes for

trust loss and considering how to react in each case. Generally speaking, the human

loses trust when the agent acts in a manner that is not to the supervisor’s likings.

Such actions can be categorized into two classes:

• misbehaviors: the agent consistently takes undesirable actions, such as mov-

ing in the wrong direction; such occurrences may be due to its control logic

failing (e.g. no boundary target detected) or when the agent’s task target dif-

fers from the supervisor’s;

• unstable motions: the agent makes an inconsistent sequence of actions, such

as moving in an oscillatory, jittery, or otherwise incomprehensible manner;

such behaviors may be caused by the presence of noise in the robot’s sensory

inputs (e.g. blurry visual target).
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One approach for addressing both types of situations is to elicit the human to inter-

vene and correct the erroneous or jittery motions. Separately, the agent could also

alter its own behaviors to lessen the adverse effects of these undesired behaviors.

Toward these ends, we propose the strategy of Trust-Aware Conservative Con-

trol (TACtiC), in which the robot agent reacts to trust losses by conservatively limit-

ing changes in its actions. Altering the agent’s behaviors conservatively allows it to

convey a sense of hesitation to the supervisor and implicitly prompt for intervening

assistance. This strategy also attenuates unstable motions caused by noisy sensory

inputs and task conditions. Given the combination of these two effects, we hypoth-

esize that Trust-Aware Conservative Control will contribute to greater efficiency for

supervisor-worker human-robot teams.

We begin by presenting the algorithm of Trust-Aware Conservative Control for

mobile robots. The TACtiC strategy completes our trust-seeking robot framework

by making use of the OPTIMo real-time trust model and complementing the inter-

active adaptation capabilities of APEX. We then discuss evaluations of two end-to-

end instantiations of trust-seeking robots within distinct task domains, which are

carried out through a large-scale interaction study as well as its extension into a

set of robot field trials. These evaluations will assess the potential efficiency gains

contributed by the TACtiC strategy, and synonymously, by trust-seeking robots.

6.1 Trust-Aware Conservative Control (TACtiC)

Our Trust-Aware Conservative Control strategy must address two important

questions: how can mobile robots display conservative behaviors, and when to en-

gage and disengage these temporary behavior alterations? We address the first sub-

problem by designing a “conservative state” of operations that alters the speed and

steering commands issued by the autonomous robot agent. This conservative state

post-processes control signals without modifying the agent’s internal executions,

therefore enabling TACtiC to be integrated with arbitrary autonomous agents.
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Focusing on the second sub-problem, we devise a trigger condition based on

salient changes in the supervisor’s trust state, for engaging and disengaging the con-

servative state. This condition uses a “trust shift” signal to quantify how humans

perceive recent trust assessments when making decisions. We compute personal-

ized trust shift thresholds reflecting salient amounts of trust losses and gains by

analyzing each user’s behavior patterns. The agent can then engage and disengage

its conservative state whenever the trust shift signal exceeds these thresholds.

6.1.1 Conservative Control Alterations

Generally speaking, “conservative behavior” involves a disposition to preserve

existing conditions and limit change. To help realize conservative behaviors for

vehicular control specifically, we analyzed incident reports of aggressive driving by

motorists [32], and identified two main categories of factors for fatal crashes:

• exceeding regulatory limits: speeding; tailgating; racing; illegal driving on

shoulder, ditch, sidewalk, or median;

• unexpected motions: erratic driving and lane change; failure to signal, yield,

or obey signs; sudden speed change; illegal passing.

Contrasting against these aggressive maneuvers, we implement conservative

vehicular control by defining a conservative state of operations C ∈ {on, off}

during which both the vehicle’s speed is reduced and the agent’s steering command

is smoothed. The speed reduction gain Γ facilitates locomotion tasks by enabling

longer reaction times for both the robot agent and the human supervisor, and is also

useful for conveying hesitation when the agent struggles at its task (e.g. fails to

detect the boundary target). Separately, we wish to enforce predictable behaviors

by attenuating oscillatory control signals that are induced by blurry or otherwise

noisy visual inputs. Toward this end, we apply an exponential filter to smooth the

agent’s steering command ωk at each time step k into an altered signal ωk:

ωk = a · ωk−1 + (1− a) · ωk where a = e−∆K/τ (6.1)
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The time constant τ introduces a temporal delay and signal smoothing, both in pro-

portion to the command interval ∆K. Section 6.2 will investigate the significance

of the Γ and τ parameters, which together affect the degree of conservative alter-

ation being applied to the robot’s motions.

6.1.2 Trust Triggers

The conservative state C is designed specifically to target situations where the

human supervisor experiences salient trust losses, and should not be enabled at

all times so as not to interfere with regular operations. Therefore, we devised a

trigger mechanism for the conservative state that accounts for human biases in the

perception of these salient changes. In particular, the “peak-end” rule is a well-

studied heuristic stating that humans base their affective evaluations predominantly

on past events with extreme outcomes (“peak”), as well as the most recent experi-

ence (“end”) [33]. When making decisions, people also tend to recall recent events

with greater ease, as explained by the “availability heuristic” [83]. Recent expe-

riences further have greater relevance after switching task targets during extended

operations. For instance, our vision-based robot agent’s excellent coastline-tracking

ability has little pertinence when it subsequently struggles at following a road.

We have anecdotally observed manifestations of these biases that favor ex-

treme and recent events consistently throughout participant behaviors during our

previous studies and field trials. Consequently, we designed TACtiC to identify

salient changes in the supervisor’s trust state within a sliding time window ofK ·W

seconds. The window duration is parametrized as an integer multiple of OPTIMo’s

W -second update interval. Given a sequence of trust estimates within a recent win-

dow of time, we define the “trust shift” signal δtk as the difference between the

latest expected trust state t̂k , E [bel (tk)], and either the smallest or largest recent

trust value, depending on the direction of the latest trust change:
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δtk =


t̂k −min

{
t̂k−K , ..., t̂k−1

}
, t̂k > t̂k−1

t̂k −max
{
t̂k−K , ..., t̂k−1

}
, t̂k < t̂k−1

δtk−1, t̂k = t̂k−1

(6.2)

The duration of the memory window should be chosen appropriately to align

with the rate of significant events during operations, which is highly dependent on

the task domain. We analyzed typical experiences of fast-paced boundary tracking

tasks from our previous observational study on trust dynamics (Section 4.3), and set

a window duration of K ·W = 5 · 3 seconds to match the average interval between

intervention periods.

As seen in Figure 6–1, the trust shift signal reflects piecewise-shifted segments

of the expected trust states that are distorted by the finite-length window. These two

samples illustrate that the memory window is useful for ignoring short-term trust

E
x
p
.
T
ru
st

t̂
k

0 10 20 30

Time (sec)

0T
ru
st

S
h
if
t
δ
t
k

(a)

E
x
p
.
T
ru
st

t̂
k

0 10 20 30

Time (sec)

0

T
ru
st

S
h
if
t
δ
t
k

(b)

Figure 6–1: Sample sequences of expected trust states are plotted along their asso-
ciated trust shift δtk signals (using a memory window of K ·W = 5 · 3 seconds).
Each trust shift (e.g. green circle in bottom plots) is computed as the difference
between the latest trust state (green circle in top plots) and the minimum/maximum
(downward/upward triangles) within a sliding window (light green area).
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perturbations while at the same time properly ignores long-outdated trust values.

The trust shift is notably different from the derivative of the expected trust state

because δtk captures cumulative changes in recent trust evolutions rather than the

instantaneous rate of change.

Armed with this trust shift signal, we next quantify the notion of salient trust

losses and gains by applying threshold parameters ∆t−, ∆t+ on the trust shift sig-

nal. In other words, we engage conservative control whenever the trust shift δtk

falls below ∆t− and disengage control alterations when it surpasses ∆t+.

These trust shift thresholds ∆t−, ∆t+ should be calibrated to each human

supervisor’s unique behaviors and attitudes. Since the OPTIMo inference engine

requires a training dataset from each supervisor, we conveniently reuse the collected

experience to derive saliency thresholds by analyzing statistical properties of user

behaviors. Specifically, we assume that the human will intervene each time the

agent misbehaves or encounters a noisy task condition. We also assume that, after

the agent successfully adapts to these interventions, the supervisor will then issue

a trust gain critique (ck = +1) as explicit approval. Consequently, we analyze

each user’s behaviors from their training interaction dataset, and identify the largest

negative trust shifts during each intervention period, as well as the largest positive

values after intervention and before a trust gain critique. The trust loss ∆t− and

trust gain ∆t+ thresholds are then computed as the medians of these two sets of

extreme values.

A benefit of this statistical selection method is that it does not need to identify

the cause of each intervention. Also, interventions due to non-trust related causes,

such as when switching boundary targets, tend to have minimal impact on these

thresholds. Our event-induced trust changes study in Section 4.2 substantiated this

trait by showing that such causes did not lead to significant trust loss.
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Algorithm 2 Trust-Aware Conservative Control (TACtiC)
Inputs: recent expected trust states {t̂k, t̂k−1, ..., t̂k−K}; conservative state Ck−1;

nominal speed νk; agent’s steering command ωk and previous filtered command
ωk−1;

Parameters: speed reduction gain Γ; smoothed steering time constant τ ; salient
trust change thresholds ∆t−,∆t+

1: compute trust shift δtk (see Equation 6.2)
2: update conservative state Ck ← Ck−1

3: if δtk < ∆t− then
4: Ck ← on
5: else if δtk > ∆t+ then
6: Ck ← off

7: if Ck = on then
8: reduce speed νk ← Γ · ν
9: computed smoothed steering ωk (see Equation 6.1)

10: else
11: νk ← ν, ωk ← ωk

12: return νk, ωk, Ck

6.1.3 TACtiC Algorithm

Algorithm 2 summarizes the TACtiC strategy, which post-processes steering

commands from the autonomous agent before sending them to the robot’s low-level

control interface. The simplicity of this strategy reflects the intuitive nature of anal-

ogous human reactions to criticisms and trust loss at the workspace, namely by

eliciting actionable feedback and adapting their behaviors to amend for deficien-

cies. Another benefit of prompting the supervisor to help out the robot agent is

the capacity to cope with arbitrary misbehaviors without requiring separate detec-

tors for different types of failures or noisy task conditions. Finally, it is important

to acknowledge such trust-induced reactions are contingent on the ability to infer

the human’s evolving trust states in real time, and therefore is only enabled by our

recent advances in online human-robot trust modeling with OPTIMo.
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6.2 TACtiC User Study with Simulated UAV

We developed two end-to-end implementations of trust-seeking robots, each

including an APEX-enabled adaptive boundary tracking agent, an OPTIMo real-

time trust inference engine, as well as a TACtiC command alteration module. To

assess the potential efficiency gains of these robot agents, we conducted a large-

scale interaction study in which 46 users teamed up with our agent to carry out aerial

coverage tasks. As an extension to this study, we also conducted field trials with

12 participants to assess the efficiency of their collaboration with a trust-seeking

self-driving car. This field trial extension will be discussed in Section 6.3.

The goal of this user study is to compare the relative team efficiency among

TACtiC-enabled agents and also against a baseline agent without any trust-induced

behaviors. These robot agents were instantiated as follows:

• Strongly Conservative (A): APEX-enabled agent exhibiting an exaggerated

degree of trust-aware conservative behaviors (Γ = 60%, τ = 1.0 sec);

• Mildly Conservative (B): APEX-enabled agent exhibiting a mild degree of

trust-aware conservative behaviors (Γ = 80%, τ = 0.5 sec);

• Baseline (C): plain APEX-enabled agent without running the OPTIMo infer-

ence engine and the TACtiC strategy.

The conservative motion parameters Γ, τ for the two trust-seeking agents were ad-

justed empirically to exhibit sensible degrees of conservative motions for fast-paced

boundary tracking tasks. We use the “strongly” and “mildly” conservative labels

to succinctly refer to these agents, and thus the reader should restrain from over-

interpreting these qualifiers.

All three agents were equipped with the APEX algorithm and thus the capac-

ity to interactively adapt their boundary tracking performances. By using the plain

APEX agent as the comparative baseline, this study builds upon our previous find-

ings in Chapter 3, which demonstrated that such adaptive agents achieved greater
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efficiency as compared to expert-tuned non-adaptive agents as well as plain teleop-

eration. Interactive adaptation is also helpful in general-purpose human-robot team

deployments (such as the scenarios in this study) since task targets do not need to

be specified before deployment and can even be switched dynamically.

The TACtiC strategy has two complementary goals: eliciting the supervisor

to participate, and mitigating adverse effects of undesirable motions. These goals

are aligned with diverse aspects of team efficiency such as improving the agent’s

perceived active collaborative efforts and attenuating drops in task performance. To

form a thorough evaluation of trust-seeking robots, both this interaction study and

its field trial extension seek to validate the following hypotheses:

Hypothesis 1 The mildly conservative trust-aware agent (B) yields greater ob-

jective efficiency ranking, quantified by performance and workload, compared to

strongly conservative (A) and non-conservative (C) agents.

Hypothesis 2 The mildly conservative trust-aware agent (B) yields greater sub-

jective efficiency ranking, quantified by perceived collaboration effort and trust,

compared to strongly conservative (A) and non-conservative (C) agents.

6.2.1 Participants

We recruited 46 users (13 females) of varied age (µ = 28, σ = 6) from the

School of Computer Science at McGill University to participate in this study. Users

had diversified levels of prior robot experience, and consisted of 8 undergraduate

students, 32 graduate students studying robotics, 4 professors involved in robotics

research, and 2 robot engineers.

Similar to our previous interaction studies, we targeted users with technical

backgrounds and high expected propensity toward robots. These participants exhib-

ited similar degrees of general proficiency and attitudes, such as moderate reported

levels of comfort with their driving skills (µ = 62%, σ = 27% degree of agree-

ment with “competent driver”) and propensity toward car automation (µ = 54%,
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σ = 29% “comfort using cruise control”). Nevertheless, compared to the expert

roboticists who took part in our real-time trust dynamics study (see Section 4.3),

this study population has markedly less familiarity with robots (µ = 3, σ = 3 years

programming experience), using a gamepad (µ = 54%, σ = 30% “competence”),

radio-controlled vehicles (µ = 30%, σ = 26% “competence”), and visual-feedback

teleoperation (µ = 32%, σ = 30% “competence”). We specifically sought out a

broader audience in order to thoroughly assess the practicality of our trust-seeking

robot agents in addition to its efficiency gains. This expansive study population also

enabled us to evaluate the degree of generalizability of our previously-shown trust

prediction accuracies for OPTIMo instances.

6.2.2 Infrastructure

This study aims to evaluate trust-seeking robots within idealized interaction

scenarios that are isolated from environmental disturbances, dynamic conditions,

and practical robot deployment concerns. We used our trust-seeking agents to con-

trol simulated drones through SightedTurtleSim, to enforce repeatable and con-

trolled conditions. Despite relying on idealized vehicular dynamics, we designed

realistic task scenarios using scenes synthesized from real-world satellite imagery.

Figure 6–2 shows the visual interface for this interaction study, which is nearly

identical to our real-time trust dynamics study. The live camera view from the robot

is overlaid with the agent’s steering commands as well as occasional manual steer-

ing from the supervisor. These commands are depicted as blue and green arrows

respectively. The user is also prompted at regular intervals by a t? icon to provide

critiques reflecting changes in their trust state.

The top-center text overlay describes the current task target, which is updated

to reflect task switches as the robot travels past pre-determined locations. We also

used a synthetic speech engine to read updated instructions out loud to ensure that

participants are aware of these task switches.
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Figure 6–2: Visual interface for the TACtiC user study depicted various stage of
the study (left) as well as the aerial drone’s live camera feed (right). The camera
view was overlaid with the agent’s steering command (blue arrow) and the human
supervisor’s interventions (green arrow). Additional overlays provided information
on session progress, current task goal, terrain coverage score, and further prompted
for trust change critiques (t?).

The top-right score overlay reflects the boundary coverage progress during

each session. This score is computed based on hand-annotated ground truth flight

trajectories. During interventions, the score is incremented at a one-tenth rate and

is colored differently, so as to inform and incentivize the user to return control back

to the agent whenever appropriate.

The control interface in this study consists of a dual joystick gamepad with an

identical mapping from our previous configurations (see Figure 4–8). The user can

intervene at any time by pushing and holding the left analog stick in the desired

steering direction, while the autonomous robot agent assumes control by default

when the analog stick is not engaged. Trust change critiques can also be freely

issued by pressing the corresponding t+, t=, and t- buttons. In light of feed-

back following our trust dynamics study concerning erroneous trust critique button
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presses, we explicitly instruct participants to press the t= button by default, as well

as to be conscientious when issuing positive and negative critiques.

Interaction scenarios in this study were divided into short sessions lasting 1-2

minutes each. These scenarios were revised from previous studies, and included

terrains with varying degrees of tracking difficulty. As depicted in Figure 3–2,

such terrains comprised of smooth highways, blurry snow-covered hillsides, and

curvy coastlines. The robot’s speed and altitude settings were empirically tuned to

ensure ample-paced task conditions and a limited field of view. This design aimed

to motivate users to delegate the steering task to the autonomous agent whenever

possible, and especially when tracking rapidly-changing boundary targets.

Figure 6–3: Interim trust feedback questionnaire for the TACtiC user study incor-
porated the user’s last trust assessment from the previous session as well as counts
for trust change critiques issued during current session.

During pauses between study sessions, the user is asked to provide feedback

about their current trust state. As seen in Figure 6–3, this questionnaire used the

same modified Visual Analog Scale (VAS) [74] variant with five anchors from pre-

vious studies, which was designed to facilitate repeated trust feedback. We also

displayed the trust response from the last study session as well as trust change cri-

tique press counts made during the current session. These elements were added to

remind the participant of their past behaviors and attitudes and help them provide

consistent incremental trust assessments.
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Figure 6–4: The final form of the trust-seeking robot framework entails multiple
modules (mauve-colored) running onboard the mobile robot. The boundary track-
ing base agent processes images from the robot’s camera to produce steering com-
mands ωr under a nominal velocity νr , νh. The APEX adaptation module con-
tinuously optimizes the tracker’s parameters Θ by comparing its outputs ωr against
the human supervisor’s intervening steering ωh. The OPTIMo engine unifies the
agent’s performance estimates with intervention states as well as trust critiques and
feedback from the human, to produce moment-to-moment beliefs over the trust
state t. The TACtiC unit alters the agent’s commands νr, ωr during periods of salient
trust loss; these altered commands νr, ωr are issued to the robot’s actuator interface
only when not overruled by the supervisor, i.e. ωh = ∅.

All elements of our trust-seeking agents along with a fully automated study

infrastructure were implemented as inter-connected processes built on top of the

Robot Operating System (ROS) middleware. The final form of our robot agent is

shown in Figure 6–4, and includes the boundary tracking base agent, the APEX

interaction parameter adaptation module, the OPTIMo real-time trust inference en-

gine, and the TACtiC trust-induced conservative alteration unit. These blocks were

developed using a combination of programming languages including C++, MAT-

LAB, and Python, while the user interface was built using HTML and Javascript.

Our development of trust-seeking robot agents amounted to over 53, 000 lines of

code that were deployed on various mobile and embedded computing architectures.
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The adaptive boundary tracking agent was configured to process camera frames

at 10 Hz with a downscaled resolution of 160 × 120 pixels while using optimized

APEX learning rates of α = 0.2, γ = 0.7. The TACtiC algorithm processed trust

beliefs inferred by OPTIMo at aW = 3 second update interval, and used a memory

window of K ·W = 5 · 3 seconds.

6.2.3 Procedure
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Administer trust modeling sessions
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Figure 6–5: Flowchart for the TACtiC user study.
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As shown in Figure 6–5, this study is separated into three phases: coaching

users, collecting interaction data to build a personalized trust model, and evaluating

the three robot agents. The study begins with an initial set of slides explaining the

task, user interface, study flow, and our performance-centric trust definition. Users

are also told that only some of the robot agents in this study will react to changes

in their trust state. Nevertheless, to avoid biasing participants, throughout the study

the three agents are labeled anonymously as A, B, and C. Also, the display interface

is identical for each agent type, and no explicit feedback is provided when a trust-

seeking agent engages or disengages its conservative state.

Following the initial slides, the user is led through an interactive tutorial and

two practice sessions to familiarize with the boundary tracking agents. One practice

session purposefully features an ambiguous forest-tracking task in which the robot

repeatedly veers off due to narrow branching tree-lines. This lets users practice

critiquing and intervening the agent, as well as calibrate their trust expectations.

The second study phase consists of 5 trust modeling sessions, each ending with

a trust feedback questionnaire. At the end of the 5 sessions, the user is asked to an-

swer a demographics survey, while their personalized OPTIMo instance is trained

in the background. To ensure that the user is not forced to wait excessively after

completing the survey, we tuned OPTIMo’s EM convergence and restart settings

to strike a balance between accuracy and process time. Once OPTIMo’s parame-

ters were trained, the study interface also provided quantitative interpretations of

the user’s modeled behaviors (e.g. intervention likelihood, trust propagation) as

interesting insights. These interpretations were computed following the procedure

previously outlined in Section 5.3.2.

During the final study phase, the user is asked to partner up with each of the

three robot agents in turn and collaborate through 3 interaction sessions. These

sessions are identical across agents and are slightly modified versions of previous
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task scenarios, while the ordering of the agents is randomized following a coun-

terbalanced repeated-subjects design. After each agent interaction block, the user

is prompted to assess the agent’s active collaborative efforts using the Visual Ana-

log Scale (VAS) answer format [74]. Also, the study interface explicitly instructs

participants to treat each new agent independently after interacting with a previous

one. Both the modeling and evaluation phases entail 20 minutes of interactions

each, and the entire study has a nominal length of 60 minutes.

We summarize the recorded interaction experiences using several metrics re-

flecting objective and subjective aspects of team efficiency. Task performance is

captured by the area of coverage around each session’s designated trajectory. This

coverage metric is similar to the score displayed during the study, although coverage

increments are not penalized during intervention periods. Separately, the amount of

active user workload is quantified as the frequency of manual interventions during

each session. These measures of objective efficiency complement the supervisor’s

perceptions toward the agent, which are comprised of the post-session trust feed-

back values and the post-interaction assessment of the agent’s collaborative efforts.

6.2.4 Results and Discussion

We now analyze the study dataset to seek to validate our hypotheses on the

potential efficiency gains of trust-seeking agents. These analyses include a sample

illustration of typical interaction experiences, an assessment of the predictive per-

formance for the trained human-robot trust models, a comparison of the different

trust-seeking agents under each efficiency metric individually, and finally aggregate

agent rankings on their overall objective and subjective team efficiency.

Typical Interaction Experience

Figure 6–6 illustrates the experience from a sample participant’s interactions

with the mild trust-seeking robot agent (B). This diagram also vertically illustrates

the procedural flow of the TACtiC strategy, from integrating the user’s behavior
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Figure 6–6: Sample interaction dataset with the mildly conservative trust-aware
agent (B) from the TACtiC user study: interventions ik and trust change critiques
ck are integrated into beliefs of the trust state belf (tk); the trust shift signal δtk is
computed from the expected trust state at each time step k; the agent engages and
disengages the conservative state as the user’s trust shift surpasses the trust loss
∆t− and trust gain ∆t+ thresholds (purple dashed lines).

and assessment factors, to updating the trust belief, then computing the trust shift

signal, and finally updating the conservative state based on salient trust shifts.

Aside from addressing a few reactions to poor agent tracking behaviors, the

majority of interventions and critiques from this supervisor resulted from training

the agent to follow each of the three boundary targets sequentially. Since the bound-

ary segments had varying degrees of task difficulty, each segment required differ-

ent amount of interventions, notably with the curvy coastline (133 − 195 seconds)
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requiring the highest frequency of interventions. The evolution of trust beliefs in-

ferred by the OPTIMo engine consistently matched these success and failure events,

and the trust-seeking agent further reacted to these extreme events accordingly by

engaging its conservative state.

Accuracy of Trained Trust Models

The personalized OPTIMo instances in this study resulted in few training er-

rors, as seen in Table 6–1’s small Root Mean Squared Error RMSEf for predicting

trust feedback, and the high accuracies acci, accc for predicting intervention states

and trust change critiques. These trained models also attained comparable levels of

performance during the post-training agent evaluation phase.

Table 6–1: Across-users prediction performance of trained OPTIMo instances dur-
ing the TACtiC user study; results are shown separately for training-set and test-set
performance, which both reflected great modeling performance, and were compa-
rable to previous empirical assessments in Section 5.3.

Trust Feedback Intervention Trust Critique
RMSEf acci accc

Model Training Phase 0.08 (σ = 0.04) 78% (σ = 9%) 63% (σ = 11%)

Agent Evaluation Phase 0.14 (σ = 0.07) 73% (σ = 14%) 58% (σ = 14%)

The test-set trust prediction results in this section were quite similar to OP-

TIMo’s predictive performance from our original model assessments in Section 5.3.

Notably, the previous evaluations were based on interaction data from expert roboti-

cists in our trust dynamics study (Section 4.3), while results in this section were

assessed against a much broader study population. Therefore, these results suggest

that OPTIMo has adequate expressiveness to accurately model trust-related behav-

iors and attitudes of a wide range of individuals beyond expert roboticists.

Per-Metric Team Efficiency

Figure 6–7 presents baseline comparison results for the strongly conservative

and mildly conservative trust-seeking agents (A and B), assessed against the indi-

vidual efficiency aspects of performance, workload, perceived collaboration, and
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Figure 6–7: Per-metric efficiency comparisons from the TACtiC user study are
shown as box plots comparing both trust-seeking agents (A and B) separately
against the baseline agent (C). The vertical dashed line in each plot correspond to
the null hypothesis representing the lack of difference between the trust-seeking and
baseline agents. These plots revealed that both trust-seeking agents attained greater
task performance, less active workload, and were perceived as more collaborative.
The mildly conservative agent (B) also earned greater trust than the baseline (C),
while the strongly conservative agent (A) was the least trusted.
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trust. Averaged across study participants, overall both trust-seeking agents attained

greater boundary task coverage and required less active workload from the supervi-

sor when compared to the plain APEX-enabled agent (C). Furthermore, the majority

of users perceived both trust-seeking agents to be more collaborative. Finally, the

mildly conservative agent (B) garnered higher trust assessments than the baseline

(C), whereas the strongly conservative agent (A) was the least trusted overall.

The performance and workload results suggest that both TACtiC-enabled agents

improved the objective aspects of team efficiency. In particular, we hypothesize

that the reduced amounts of cumulative intervention may have resulted because the

TACtiC strategy prompted users to intervene swiftly, which made it easier to resolve

the robot agent’s misbehaviors.

On the other hand, subjective efficiency metrics showed a discrepancy in pref-

erence for the strongly conservative agent (A), which was perceived to be more

collaborative yet less trusted than the baseline agent (C). Upon closer analysis of

the post-study feedback, we found that many participants acknowledged agent A’s

active efforts toward maintaining teamwork, but at the same time were frustrated

by its extremely slow speed and delayed reactions. Nevertheless, the mildly conser-

vative trust-seeking agent (B) attained greater perceptions for both its collaborative

efforts and trustworthiness, therefore suggesting that its conservative state parame-

ters were more appropriate in this interaction context.

The per-metric comparisons did not reveal any significant differences in mag-

nitudes among the agents. We justify these numerical similarities by noting that

the metrics were computed cumulatively across extended periods of interactions,

whereas the conservative state in trust-seeking agents was by design only meant

to be triggered during few and short occurrences of notable trust loss. Also, all

three agents in this study, including the baseline, were equipped with interactive
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adaptation capabilities. These capabilities have been previously shown in Chap-

ter 3 to yield significantly greater efficiency, in comparison to both non-adaptive

expert-tuned agents as well as to plain teleoperation.

Aggregate Team Efficiency

In addition to per-metric assessments, we also investigated whether any of

the agents had received notably greater preference when considering their aggre-

gate contributions toward the objective and subjective facets of team efficiency.

Looking at Figure 6–8, the mildly conservative trust-aware agent (B) was ranked

highest in terms of both aggregate efficiency aspects. Both mean agent orderings

were corroborated by identical across-users aggregate rankings computed using the

Kemeny-Young method [110].

Friedman test [35] on the objective efficiency rankings of performance and

workload revealed weakly significant differences among the agents (χ2 (2) = 5.609,

p ≤ 0.10). In contrast, a similar analysis found evidence of strong agent pref-

erence among subjective efficiency rankings of perceived collaboration and trust

(χ2 (2) = 11.783, p ≤ 0.01). Post hoc Nemenyi testing [22] at α = 0.05 found

agent B to be consistently preferred among users’ subjective assessments.

Summarizing the above analyses, we have empirically demonstrated that the

Trust-Aware Conservative Control strategy, when suitably tuned for the task do-

main, contributed to both superior objective and subjective facets of efficiency

within asymmetric human-robot teams. In particular, the mildly conservative trust-

seeking agent (B) was consistently perceived as more collaborative and trustworthy

among robotics researchers and enthusiasts alike. Consequently, these results have

substantiated both of our Hypotheses 1 and 2.

Additionally, the corroborations of these hypotheses were contingent on sev-

eral precursor conditions, including proper user coaching, accurate trust modeling,
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Rank 3 Rank 2 Rank 1

Crit. Diff. (α=0.05)

Baseline (C)

Strong Conserv (A)

Mild Conserv (B)

Objective Efficiency: Coverage, Intervention

Friedman χ2(2)=5.609, p=0.061

(a)

Rank 3 Rank 2 Rank 1

Crit. Diff. (α=0.05)

Strong Conserv (A)

Baseline (C)

Mild Conserv (B)

Subjective Efficiency: Collaboration, Trust

Friedman χ2(2)=11.783, p=0.003

(b)

Figure 6–8: Mean agent rankings across users from the TACtiC user study revealed
that the mildly conservative trust-aware agent (B) was ranked highest for both ob-
jective and subjective efficiency facets. Agent B was also consistently preferred
among users, as reflected by the presence of a critical difference during post hoc
Nemenyi analysis (i.e. the lack of a thick horizontal line straddling agent B in (b)).

and suitable selection of trust triggers. These conditions were all met within the

study’s tight duration, thus reflecting the rigor in our study design process.

Furthermore, after the study, several users reported delight in perceiving the

trust-seeking agents as having great foresight. Many cited specifically that these

agents smoothly tracked the curvy coastline without wastefully turning in and out

of every little inlet. These anecdotes demonstrated that TACtiC was not only ben-

eficial toward swiftly prompting the supervisor’s interventions, but its command

filtering feature also contributed both to improved task performance and superior

user satisfaction, even for challenging task scenarios.

6.3 TACtiC Field Trial Extension with SL-Commander Vehicle

The previous user study showed that the TACtiC strategy contributed consis-

tently to team efficiency gains within controlled and idealized scenarios. We ex-

tended this interaction study through a set of field trials with the SL-Commander

vehicle, in which 12 of our study participants partnered up with boundary tracking
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agents to navigate through a challenging test course at the Canadian Space Agency.

These field trials aimed to obtain further empirical evidence supporting the effi-

ciency gains of trust-seeking agents, and especially within real-world conditions.

We specifically sought to re-affirm Hypotheses 1 and 2 by contrasting the mildly

conservative trust-aware agent (B) against the plain APEX agent (C).

Several logistic challenges emerged during the field trial planning, including

tight test schedules, limited availability of the vehicle, and access restrictions to the

test site. In light of these challenges, we designed these field trials as an extension of

the previous user study, rather than a standalone experiment. This decision enabled

us to make incremental adjustments to the infrastructure toward streamlining the

development process, and to optimize the length of each trial run by re-using the

trained OPTIMo instance from the participant’s interaction study dataset.

6.3.1 Participants

We designed these field trials to accommodate all participants from the pre-

vious study. Nevertheless, only 12 users (1 female) were able to meet the tight

scheduling and security requirements for accessing the test site at the Canadian

Space Agency. All of these participants were actively engaged in robotics research,

and comprised of 8 graduate students, 2 professors, and 2 robot engineers.

6.3.2 Infrastructure

Only minor adjustments were made to the boundary tracking agent and the

fully-automated infrastructure of our TACtiC user study. We replaced the planar-

view aerial boundary tracker with the frontal-view variant suitable for the SL-

Commander, while using identical settings for the APEX adaptation algorithm, the

OPTIMo inference engine, and the TACtiC control alteration strategy. The SL-

Commander’s front-hood camera was hand-tuned to a static pose of 8◦ right-side

pan and 20◦ downward tilt. This configuration ensured proper visibility of the road-

side boundaries within the test course.
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Figure 6–9: During the TACtiC field trial extension, the participant sat in the SL-
Commander’s passenger seat and interacted with boundary tracking agents using
the same gamepad interface from the TACtiC user study, while a tablet below the
windshield displayed the agent’s overlaid camera visualizations and post-session
trust feedback questionnaire.

As shown in Figure 6–9, the participant sat in the passenger seat while super-

vising the boundary tracking agents. A familiar visual interface featuring the live

camera feed with overlaid steering commands was displayed on a tablet placed be-

low the windshield on the passenger’s side. In order to accommodate participants

who preferred to keep their eyes on the road at all times, an audio cue was used to

prompt for trust change critiques every 5 seconds.

The interface for issuing interventions and critiques remained unchanged and

used an identical gamepad interface. Additionally, users could press two shoulder

buttons to increase or decrease the car’s nominal speed by ±1 km/h. The speed

was set to 0 km/h at the beginning of each session, and also had a maximum setting

of 20 km/h. During preliminary testing, we found that speed changes consistently

correlated with changes in trust, where one would decrease speed in response to

abrupt motions and increase speed after appropriate training. Therefore, we config-

ured speed change commands also to produce positive and negative trust critiques.
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These field trials employed the same 1 km gravel circuit at the Canadian Space

Agency site that was used previously during the APEX interactive driving field

demonstrations. Recalling from Figure 3–12, the target gravel road was surrounded

by assorted hurdles, including narrow pathways, road intersections, bordering wa-

tery ditch, and nearby parked cars and sheds. These obstacles presented constant

challenges with varying degrees of difficulties in the boundary tracking task, and

also regularly impacted the comfort of each participant.

6.3.3 Procedure

Administer practice session

Administer agent evaluation sessions

Start
Show

tutorial
slides

(repeat for 2 agents in random order:
MildConserv, Baseline)

Drive SL-Commander
to starting position

Engage
free-roam

session

Administer
post-session

trust
questionnaire

Drive SL-Commander
to starting position

Engage
path-limited

session

Administer
agent

evaluation
questionnaire

End
Administer
debriefing

questionnaire

Figure 6–10: Flowchart for the TACtiC field trial extension.

As shown in Figure 6–10, each trial run was comprised of three interaction

sessions along the 1 km test course. In the first session, the participant practiced

collaborating with a plain APEX-enabled agent to familiarize with the interface

and course layout. The following two sessions featured the mild trust-induced
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conservative agent (B) and the baseline agent (C) in a randomized order. During

these evaluation sessions, participants were instructed to proceed through the course

quickly while operating within their comfort levels. We also explicitly encouraged

users to be mindful of the robot agent’s performance and to consider delegating the

steering task to the agent when appropriate. The simplicity and brevity of these

field sessions were predominantly due to the severe restrictions on the deployment

schedules, vehicle, and test site.

Interaction experiences collected during trial runs were evaluated using a near-

identical set of metrics reflecting objective and subjective aspects of team efficiency.

More specifically, the unchanged efficiency metrics included the intervention fre-

quency as well as post-session trust feedback and perception of each agent’s col-

laborative efforts. As the sole exception, task performance was quantified by the

elapsed duration of each session while traveling through the fixed-length course.

This metric was chosen for practicality purposes within a field deployment setting.

6.3.4 Results and Discussion

We now present several empirical analyses based on the recorded dataset from

the TACtiC field trial. These include an assessment of OPTIMo’s performance at

predicting the supervisor’s behaviors and attitudes while collaborating with the SL-

Commander robot, per-metric efficiency results, and aggregate efficiency rankings

between the mildly conservative agent (B) and the baseline agent (C).

Accuracies of Trust Models

We evaluated the performance of our OPTIMo instances, which were trained

previously for each participant of the aerial coverage TACtiC user study, on inter-

action factors within the different task context of interactive autonomous driving

in these field trials. The across-users MLE prediction accuracies were as follows:

RMSEf = 0.21 (σ = 0.18), acci = 69% (σ = 5%), accc = 50% (σ = 15%).
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These results were generally comparable to the test-set performance values from

our user study, albeit with slightly increased error for predicting trust feedback.

We suspect that the discrepancy in trust feedback prediction performance may

be related to the context change from remotely operating a simulated drone to steer-

ing a vehicle from its inside. Due to the physical and material risks, we believe that

participants likely had adopted cautious and sensitive attitudes when interacting

with our trust-seeking agent within this custom research vehicle, which was known

to be valued at over 1, 000, 000 dollars US. This theory is consistent with anecdotal

evidence that many users during the initial practice session were visibly stressed

and operated the vehicle during most of the course at low speeds of 2− 6 km/h. All

participants were receptive to gentle encouragements during the practice session to

gradually increase the vehicle speed, although only 4 out of 12 users were com-

fortable enough to operate the SL-Commander at the 20 km/h maximum velocity

during the agent evaluation sessions that followed.

Per-Metric Team Efficiency

Per-metric efficiency results for the field trials are shown in Figure 6–11. The

trust-seeking agent (B) contributed on average to faster session completion times

and was perceived as both more collaborative and trusted than the baseline agent

(C). Nevertheless, the amount of active workload expanded to supervise both agents

were comparable. Additionally, none of the per-metric results revealed any signifi-

cant differences between the two agents’ efficiency attributes.

We attribute the comparable intervention frequencies among robot agents to

the frequent occurrence of obstacles and hurdles within the short test circuit, such as

narrow pathways as well as nearby trees and buildings. We suspect that the impacts

of these obstacles were amplified by the observed cautious attitudes of our partic-

ipants. Also, the lack of significant changes in the magnitudes for the individual

efficiency metrics was likely due to both the trust-seeking agent and baseline agent
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Figure 6–11: Per-metric efficiency comparisons for the TACtiC field trial exten-
sion are shown as box plots, while the vertical dashed lines denote the points of
indifference between the mildly conservative trust-aware agent (B) and the baseline
agent (C). Results suggest that the mildly conservative trust-aware agent achieved
faster task completion, and was also perceived as more collaborative and trusting.
Despite these efficiency gains, users nevertheless intervened at comparable frequen-
cies when interacting with both agents.

having exhibited identical behaviors during most of the field sessions, with the sole

exception of rare occasions of salient trust loss. Nevertheless, it is important to

acknowledge that these results were qualitatively consistent with the demonstrated

efficiency gains of TACtiC-enabled agents during our user study. This substantiates
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both the practical efficacy of trust-seeking robots as well as their capacity to gener-

alize to different robot vehicle types, remote or in-situ operating contexts, as well

as diverse application domains.

Aggregate Team Efficiency

As shown in Figure 6–12, aggregate efficiency rankings demonstrated that

the majority of participants preferred the mildly conservative agent over the plain

APEX agent, both in terms of objective and subjective team efficiency facets. These

preferences were supported by identical agent orderings computed using the Kemeny-

Young voting scheme [110]. Nevertheless, neither the objective rankings (Fried-

man: χ2 (1) = 0.333, p = 0.564) nor the subjective orderings (Friedman: χ2 (1) =

1.333, p = 0.248) were statistically significant.

Rank 2 Rank 1

Crit. Diff. (α=0.10)

Baseline (C) Mild Conserv (B)

Objective Efficiency: Duration, Intervention

Friedman χ2(1)=0.333, p=0.564

(a)

Rank 2 Rank 1

Crit. Diff. (α=0.10)

Baseline (C) Mild Conserv (B)

Subjective Efficiency: Collaboration, Trust

Friedman χ2(1)=1.333, p=0.248

(b)

Figure 6–12: Mean agent rankings across users from the TACtiC field trial exten-
sion found that the mildly conservative trust-aware agent (B) was ranked highest
for both objective and subjective efficiency facets. Nevertheless, post hoc Nemenyi
testing revealed the lack of critical differences among the agent rankings (i.e. the
presence of thick horizontal lines straddling both agents).

These aggregate evaluations are consistent with the per-metric assessments

and suggest that there was a notable amount of variability between the experiences

among different participants. We also attribute the lack of statistical significance in
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these results to the limited number of participants and evaluation sessions. Both of

these design factors were affected by the severe constraints imposed during these

robot field trials. Despite the challenging field deployment hurdles, our TACtiC-

enabled trust-seeking robot agent was still preferred over the baseline agent both in

terms of objective and subjective team efficiency attributes. Also, these results are

consistent with findings from our user study, which notably demonstrated statisti-

cally dominant preference of trust-seeking agents over plain adaptive agents within

controlled conditions.

In summary, empirical findings from this field study extension provided ad-

ditional support for Hypotheses 1 and 2, thus substantiating the efficiency gains

contributed by trust-seeking robots. Also, all of the participants expressed content

with the agents’ performances and the overall experience of collaborating with a

smart car. One user commented: “Since I was pressing the trust change buttons

constantly during autonomous control, it dawned on me pretty late that I was not

actually in control; even then I felt unusually comfortable.” Another stated: “Once

I got used to teaching the agent quickly, I was more confident in the narrow parts of

the course, and overall my trust was increased.” These reports suggest that agents

that can react to user’s actions and attitudes have great utility and promise toward

enabling autonomous cars and other mobile robots to achieve efficient and trusting

collaboration with humans.

6.4 Summary

In this chapter, we presented the final and completed form of our trust-seeking

robot framework. This framework imbued autonomous agents with interactive be-

havior adaptation capabilities via Adaptive Parameter EXploration (APEX), the

ability to infer their human supervisor’s trust state in real-time using the Online

Probabilistic Trust Inference Model (OPTIMo), and the novel capacity to react to

152



and resolve trust offenses via Trust-Aware Conservative Control (TACtiC). We de-

scribed end-to-end instantiations and evaluations of trust-seeking robot agents for

distinct tasks of collaborative aerial coverage and interactive autonomous driving.

These implementations represent the first-ever realizations of autonomous robots

that can react in direct response to changes in their human collaborator’s trust state.

Results from our large-scale interaction study and field trial extension have

shown that the pervasive human notion of trust can be capitalized to maintain effi-

cient supervisor-worker human-robot partnerships. These demonstrated efficiency

gains also reflect our successful efforts at accurately modeling each user’s trust ten-

dencies. All of these achievements were further contingent on the massive amount

of systems development to realize our evaluations, which included an iteratively-

designed and fully-automated study infrastructure, as well as real-world deploy-

ments under severely constrained logistics onto the state-of-the-art self-driving SL-

Commander vehicle.

While there were some degrees of variability among users’ sensitivity toward

robots that inferred and reacted to their trust states, some collaborators synergized

exceptionally well with trust-seeking agents. These participants attained, for in-

stance, over 50% improved task performance during the controlled study on aerial

coverage, and 30% faster task completion in the follow-up interactive driving field

trials. More importantly, all of our aggregate efficiency analyses have shown that

trust-seeking robot agents were ranked higher than baseline adaptive agents devoid

of trust-related capabilities, under both the objective and subjective facets of team

efficiency, and within both our large-scale user study as well as its field trial exten-

sions. Therefore, we expect these dominant preferences of trust-seeking agents to

accumulate into every greater efficiency boosts in the long run.
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Chapter 7
Conclusions

This thesis investigated several aspects of trust within asymmetric collabora-

tive teams comprised of a human supervisor and an autonomous robot agent. Our

end-goal of efficient team collaboration extended the dominant research goal in

robotics of improving task performance, by also considering equally important fac-

tors such as mitigating unnecessary workload and ensuring high satisfaction.

Guided by extensive evidence from supervisor-worker human-robot collabo-

ration experiences, we developed the trust-seeking robot framework that integrated

into arbitrary robot agents to grant them the capacities to adapt and react to the

human’s evolving trust state. We evaluated multiple instantiations of such trust-

seeking robot agents within diverse application domains and demonstrated their

contributions empirically toward improving team efficiency as well as actively mit-

igating teamwork breakdown. Although many robot learning methods, including

our APEX module, have been shown to improve task performance, few autonomous

systems have demonstrated the ability to cater to each human supervisor’s unique

preferences and personalities. Our trust-seeking robot framework fulfilled both ob-

jectives simultaneously by imbuing autonomous robot agents with the capacity to

adapt to their human collaborator’s actions and attitudes.

7.1 Summary of Contributions

The main contributions of this thesis reflect the individual components that

make up our trust-seeking robot framework:
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• Chapter 3 established the Adaptation from Participation (AfP) paradigm as a

fluid interaction scheme for non-expert supervisors to collaborate with robot

agents toward improving task performance and reducing active workload.

These adaptive agents also sought to gain their supervisor’s trust implicitly

via behavior imitation.

• Chapter 4 described extensive data collection efforts for studying supervisor-

worker team interactions from a large group of roboticists and enthusiasts

with wide varieties of experiences, attitudes, and geography. Analyses on

these datasets substantiated the dominant influences of personality factors

that call for personalized trust modeling, and also revealed several key in-

sights that shaped the structure of our temporal trust model.

• Chapter 5 presented the Online Probabilistic Trust Inference Model (OP-

TIMo) and demonstrated its superior trust prediction performance over ex-

isting formulations. OPTIMo’s unique ability of real-time trust inference also

opened up rich new possibilities for robot agents to continuously react and

adapt to the human’s trust evolutions.

• Chapter 6 proposed Trust-Aware Conservative Control (TACtiC) as a gener-

alized means for the large class of locomotion-centric robot vehicles to rem-

edy trust losses from the human supervisor. To the best of our knowledge,

these TACtiC agents are the first-ever instantiations of autonomous robots

that have the capacity to react in direct response to each human supervisor’s

evolving trust state.

Our research also called for a substantial amount of systems development,

including general-purpose autonomous boundary tracking agents, field-ready inte-

grations with aerial and terrestrial, and marine robot vehicles, as well as robust and

fully automated study infrastructures. These endeavors amounted to over 53, 000
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lines of code that were deployed on various mobile and embedded computing ar-

chitectures.

7.1.1 Interaction Design Guidelines for Supervisor-Worker Teams

The display interfaces for facilitating human-robot interactions in our numer-

ous user studies and field trials are shown in Figure 7–1. In addition to these realiza-

tions, we have also experimented with various textual, icon, and graphical overlays

to provide greater situational awareness to the human supervisor and also selec-

tively guide their attention, adhering to established interface design guidelines [37].

(a) Coastline Tracking with
Unicorn Fixed-Wing [98]

(b) Trust Change Analysis us-
ing SightedTurtleSim [103]

(c) Interactive Driving with
SL-Commander [106]

(d) Trust Dynamics Modeling
using SightedTurtleSim [100]

(e) Trust-Aware Coverage us-
ing SightedTurtleSim [102]

(f) Trust-Aware Driving with
SL-Commander [102]

Figure 7–1: Evolution of display interfaces for our interactive boundary tracking
robot agent throughout user study and field trial designs.

Along with each design iteration, we have collected anecdotal evidence and

participant feedback that highlighted several important usability-related factors. We

synthesized these observations into the following interface design guidelines for

supervisor-worker human-robot teams:

• Guideline 1: Continue to execute the robot agent and visualize its output

commands during periods of human intervention, so as to help the human
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supervisor ascertain when the agent has adapted sufficiently and can resume

autonomous control (Section 3.1);

• Guideline 2: Avoid using complex visualizations of the robot agent’s internal

state (e.g. animations of detected boundary curves and line fits for our bound-

ary tracking agent) to prevent confusing and distracting users who do not have

expert understanding about the agent’s internal logic (Section 4.2.4);

• Guideline 3: Reduce the number of inputs on peripheral devices by merging

functionalities (e.g. using the same analog stick on a gamepad for both inter-

vention engagement and control) to help reduce mental strain, especially for

users having limited experience with such devices (Section 4.3.2);

• Guideline 4: Be wary of accidental and erroneous user inputs, such as re-

flex reactions to stimuli (e.g. pressing incorrect trust change button following

visual, audio, or vibrational prompt) (Section 4.3.4), and address these is-

sues by educating users to be conscientious as well as modeling their effects

accordingly (Section 5.2.2).

7.2 Future Directions

Our research in this thesis has contributed to many scientific strides, such as

establishing interactive adaptation as a baseline capability of robot agents, identify-

ing the dominant effects of personality factors toward human-robot trust dynamics,

unifying trust modeling approaches of causal performance attribution and evidence

grounding, and finally exploring agent behaviors that were explicitly induced by

the human’s trust losses. Each of these contributions also opened the doors to nu-

merous technical improvements as well as theoretical extensions, which we now

highlight.

• Time-aligned adaptation: One improvement to APEX involves aligning im-

age frames with past intervening commands to account for the supervisor’s

hand-eye coordination delay, similar to related agent learning systems [53].
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Preliminary testing showed that this noticeably improved adaptation quality

and rate for rapidly-changing boundary targets. This technical extension also

leads to several open-ended theoretical problems, such as ascertaining each

individual’s delay value and coping with the added latency in the agent’s

adaptation process.

We have also investigated a similar time alignment strategy for OPTIMo.

Empirical results showed negligible difference in across-user model perfor-

mance at interaction-time scales (e.g. W = 0.5), while such sub-second time

alignment also made negligible changes to the aggregated interaction factors

when using wider time windows.

• Adaptive learning agents: It would be valuable to combine the multi-task

interactive capabilities of the Adaptation from Participation (AfP) paradigm

with powerful learning-from-scratch capacities of Learning from Demonstra-

tion (LfD) techniques. We are keen to enhance robot agents with the ability to

commit and recall learned abilities when encountering repeated scenes, while

still adapting their behavior to the latest task conditions.

• Persuasion to stop intervening: Several users in our studies tended to in-

tervene persistently even when the robot agent demonstrated consistent and

excellent tracking performance. Therefore, we see value in detecting such

cases of unnecessary interventions and persuading these supervisors to give

the agent a fair chance to prove itself. In addition to the potential use of phys-

iological sensors and electrodes, we are especially interested in non-intrusive

solutions based on cognitive human-robot interaction techniques similar to

our research in this thesis. In particular, the former problem can be addressed

potentially by looking for discrepancies between observed interventions and

OPTIMo’s predictions, or by using APEX’s long-term command cost. We

158



speculate that the latter problem may warrant occasional use of behavioral

economics techniques such as asymmetric dominance [3].

• Localized trust inference: We have demonstrated OPTIMo’s state-of-the-

art trust inference capabilities using a histogram-based engine implementa-

tion. While the histogram approximation accurately captures the underly-

ing continuous belief at a given sampling resolution [91], it can nevertheless

be wasteful by uniformly sampling the entire trust space at every time step.

Since the human’s trust state is often highly localized (e.g. see Figure 5–4),

we can exploit this feature to make efficient inferences using distribution-

biased Markov-Chain Monte Carlo (MCMC) sampling methods.

• Trust archetypes: An exciting application of personalized OPTIMo instances

is to group like-minded users based on the similarities in their trained model

parameters. Such capabilities can then be used to cross-train or bootstrap trust

models for new supervisors by leveraging the corpus of experiences from pre-

vious individuals with similar trust-induced reactions and assessments. This

extension can also enable class-specific interface designs with different lay-

outs and display elements catering to amateur, enthusiast, and expert users.

• Unified trust modeling and elicitation: We have the desire to unify trust

modeling and trust-induced behavior alteration into a single computational

framework, for instance, using the Influence Diagram extension to Proba-

bilistic Graphical Modeling [54].

• Lifelong trust adaptation: We are keen to augment OPTIMo and TACtiC

to cater to long-term evolutions in the supervisor’s behaviors and attitudes as

she acclimates to the robot’s capabilities and limitations over time. Following

the principle of Adaptation from Participation, parameters pertaining to the

trust model, the amount of reactive conservative control, and personalized
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trust shift thresholds could all benefit by evolving alongside this maturing

supervisor-worker relationship.

• Distrust vs. mistrust: Two different sub-optimal teamwork states are caused

by distrust (i.e. lack of trust) that is reflected by excessive interventions, ver-

sus mistrust (i.e. unjustifiably strong trust) issues such as inattentiveness and

amplified expectations of competence and safety. Both causes can impede

productivity and collaboration, and have even lead to fatal consequences in

extreme cases [69]. The trust-seeking robot framework currently targets dis-

trust, although it would be interesting to apply a similar methodology toward

detecting and correcting cases of robot mistrust.

• Trust in social robots: Another venue of interest is to extend the trust-

seeking robot framework to social robotics in medical care and household

contexts. One exciting research problem in these domains is whether robots

with anthropomorphic forms may evoke more affective reactions from human

supervisors, and if so, then how to account for these factors in trust modeling

and elicitation methods.

As these human-robot interactions verge toward collaboration among human

peers, we must also begin to account for intention-centric trust factors in the

agent’s inferences and reactions. This generalization may require a funda-

mentally different methodology however, since often when a violation arises

due to poor intentions or integrity, it can be extremely laborious and chal-

lenging to regain trust [17].

7.3 Closing Words

This thesis has contributed a novel methodology and end-to-end realizations of

affect-based robot agents that are predicated on the pervasive human sentiment of

trust. Affect-based agent adaptation can be seen as the fourth evolutionary stage that
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traces back to feedback control (i.e. adapt to odometry and sensor-based error esti-

mates), then to reinforcement learning (i.e. adapt to world experiences), and in turn

to Learning from Demonstration (i.e. adapt to the user’s actions). All of these forms

of adaptation are essential for the robot agent, along with its human supervisor, to

cope with myriad types of challenging task conditions in an efficient and robust

manner. As advanced robotics of the likes of self-driving cars, fleets of planes and

drones, and household robots continue to immerse into the mainstream, tenacious

trust and rich interactions will have ever greater importance toward enhancing and

maintaining the efficiency of society’s collaboration with these intelligent systems.
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Appendix A
A Vision-Based Boundary Tracking Framework

All of our investigations into human-robot trust in this thesis are grounded

within the visual navigation task domain. We had originally developed a general-

purpose robot controller for tracking visually homogeneous terrain boundaries.

This controller then served as the base robot agent for all of the trust-related studies

and developments that followed in this thesis.

Boundary tracking tasks constitute an essential component within many aerial,

terrestrial, and marine applications, including mapping the contours of biomes,

monitoring the evolution of phenomena such as forest fires and oil spills, as well

as inspecting pipes and roadways. Our boundary tracker evolved from an ini-

tial project for autonomously steering fixed-wing aerial drones alongside coast-

lines [98]. During the corresponding coastline tracking field trial, we encountered

several limitations of the agent’s capabilities and of the nature of its interactions

with a human operator. These observations directly fueled our investigations into

human-robot trust, all of which were aimed at improving the collaborative effi-

ciency with similar types of robot agents. We now present the final form of this

visual-based robot controller, and also elaborate on a field deployment where it was

used to steer an aerial drone along coastlines.
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A.1 Boundary Tracking Pipeline

Our autonomous agent identifies and tracks salient terrain boundaries within

image frames acquired from a mobile robot’s camera. The detected boundary loca-

tion data are then converted into steering commands for the robot, which operates

at a fixed forward velocity.

(a) planar-view (e.g. aerial drone) (b) frontal-view (e.g. automobile)

Figure A–1: Sample frames from different robot camera placements.

The visual processing pipeline has two variants with mostly overlapping ele-

ments, each designed to accommodate robot platforms with distinct camera place-

ments. As seen in Figure A–1, the “planar-view” variant assumes that the image

plane is parallel to the ground plane containing the target terrain boundary, whereas

the “frontal-view” variant relaxes the planar constraint and assumes that the camera

is pointing forwards, albeit with arbitrary pan and tilt. The planar-view agent is de-

signed to accommodate aerial or marine robots and regulate their heading direction

while operating in fixed-altitude or fixed-depth modes. In contrast, the frontal-view

variant is intended to cater to wheeled or terrestrial platforms. Depending on the

robot platform’s low-level actuation interface, this boundary tracking agent outputs

steering commands in the form of either angular velocities, yaw rates, or incremen-

tal GPS waypoints.
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Figure A–2: Our boundary tracking pipeline consist of segmenting terrain patches
in each camera frame, selecting a target boundary to track across frames, and map-
ping boundary data into steering commands; dashed blocks depict conditional steps.

A.1.1 Segmentation Stage

The boundary tracking pipeline has three processing stages, as illustrated in

Figure A–2. In the first stage, visually homogeneous image patches are segmented

out to highlight a particular target terrain of interest. Prior to segmentation how-

ever, a preprocessing step is needed for the frontal-view variant to remove horizon

content from the scene and focus on tracking ground-plane terrains. This step is

implemented by cropping out a certain portion of rows from the top of each frame,

and is dictated by the horizon cutoff ratio configuration parameter H0.
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The segmentation process takes as an input parameter the appearance type Ta,

which corresponds to a chosen pixel representation that is well-suited at distinguish-

ing the target visual regions from its surroundings for a given visual navigation task.

We implemented several Ta options suitable for different application domains, for

instance using hue to distinguish water bodies from land, and grayscale intensity to

segment out man-made structures such as roadways. We also offered a third, more

complex appearance type based on the Hue-Saturation-Value (HSV) colorspace that

selectively favors the hue or value channels [89]. This hue-value hybrid represen-

tation is designed to facilitate recognizing objects in natural scenes.

Given a chosen appearance type Ta, we apply K-means cluster analysis to

label each pixel in the image as either the target region or non-target region. Akin

to the work of Stauffer et al. [87], when processing each frame, cluster centroids

for the target and non-target labels are updated for a fixed number of iterations.

This termination criterion allows the system to adapt to slowly-varying transitions

in illumination and terrain appearances over time.

Since the cluster analysis above focuses solely on the pixel appearance, the

segmented image often results in jagged boundaries and patches within patches. To

enforce spatial consistency, we use a median filter to smooth out pixelation artifacts

near the region contours. We also blend smaller-sized patches into its surrounding

regions using a two-pass algorithm, to isolate the most dominant regions in each

frame associated with the target terrain of interest.

This region merging step operates differently when tracking contours with an

edge-like appearance (such as a coastline) versus boundaries with a strip-like look

(such as a roadway). This boundary type Tb is specified as an input parameter to

the boundary tracking pipeline. If the boundary is identified as a strip type, then

the region merging step will consolidate smaller-sized patches until there is at most

two connected regions for the target and non-target labels respectively. Otherwise,
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for an edge-type boundary, the merging process continues until there is at most a

single patch each for the two labels.

At the end of the segmentation stage, we ensure that the labeled regions for

the target terrain occupy a reasonable portion of the frame. This cluster rejection

check prematurely terminates the entire pipeline if the total label count for the tar-

get region divided by the frame resolution lies beyond designated minimum and

maximum cluster ratio parameters
[
Rclstr
min , R

clstr
max

]
.

A.1.2 Boundary Selection Stage

The second pipeline stage consists of identifying the target boundary contour

being tracked. This process is facilitated by the previous region merging step,

which had removed small-sized spurious image patches from consideration. Con-

sequently, an edge-type boundary curve is obtained by simply applying an edge

detection operator to the binary-segmented image. In contrast, if both sides of a

strip-type boundary are in view, then the target boundary curve is designated either

as the longest curve within an initial frame, or the connected set of edgels in sub-

sequent frames that is closest to the previous-detected target curve. The selected

boundary is represented both by its edgel-based contour, as well as a linear fit.

A.1.3 Control Mapping Stage

The final pipeline stage is responsible for generating steering commands to

drive the robot alongside the target terrain boundary based on the detected bound-

ary within each camera frame. The final tracking behavior depends on several cri-

teria: for instance, one may choose to steer aggressively toward the intersection

point between the boundary curve and the image borders, or conservatively navi-

gate to align the boundary curve with the center of the image plane. The degree

of smoothness in tracking rapidly-changing boundaries can also be more generally

specified in the form of a Proportional-Derivative (PD) controller. Also, the frontal-

view controller variant must account for the projective mapping between the image
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plane and the ground plane, which are not assumed to be parallel. Furthermore,

when using this agent to steer wheeled robots alongside roadside curbs or similar

contours, one must designate a nominal lateral distance to maintain between the

vehicle and the target boundary.

In prior work, we parametrized robot-specific tracking requirements into sepa-

rate pipeline iterations, such as steering aerial robots directly toward the boundary-

line-to-image-border intersection [98], a PD controller generalizing the previous

formulation [104], and a feature-based formulation for steering frontal-view wheeled

robot at fixed distances alongside boundaries [104]. Our latest pipeline formulation

subsumes all of these previous variations by computing the steering command as a

weighted linear combination of features derived from the detected boundary data,

namely:

• the image-plane direction pointing toward the intersection between the bound-

ary curve and the image borders, closest to the robot’s forward direction;

• a similar direction pointing toward the intersection of the boundary’s line fit

and the image borders;

• the orientation of the boundary line fit;

• values of all of the above features in the previous frame, if available;

• the intersection between the boundary line and an imaginary horizontal line

going through the image center;

• a unit bias.

We saturate the output of this weighted linear expression at a specified maximum

steering magnitude for safety. The resulting control signal is then transformed into

either yaw rates, angular velocities, or incremental GPS waypoint commands, de-

pending on the particular robot platform’s actuation interface. The feature weights

in the linear control law implicitly encode various attributes of the tracking pro-

cess, such as its responsiveness to changes in the boundary’s shape, perspective
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compensation for non-planar-aligned cameras, and the nominal lateral spatial dis-

tance between the robot and the boundary.

A.1.4 Summary of Configuration Parameters

As described above, this general-purpose visual navigation framework can be

used to steer different robot configurations and along various types of terrain bound-

aries. Nevertheless, the accuracy at which the agent can detect a specific boundary

of interest and steer alongside it depends strongly on choosing appropriate values

for the various pipeline parameters, namely:

• appearance type: hue, grayscale, or hue-value hybrid

• boundary type: edge or strip

• horizon ratio (planar-view variant only)

• feature weights in the control law

In addition to the previous configuration parameters, this autonomous agent

features several secondary system settings, such as the cluster ratio bounds, and the

maximum steering magnitude. We can tune these nuisance parameters by carry-

ing out sensitivity analyses when encountering a new robot configuration or a new

boundary tracking task. Consequently, these settings have negligible impacts on the

agent’s moment-to-moment performance.

A.2 Aerial Coastline Tracking Field Trial

To assess the initial implementation of our autonomous boundary tracking

agent, we carried out a field trial that used the Unicorn fixed-wing UAV to track

coastlines. During three initial manual flight sessions, we collected aerial footage

of a 1 km stretch of tropical shoreline, and used this dataset to assess the agent’s

coastline tracking performance in a human-like manner. This dataset was also used

to tune the agent’s various configuration parameters. Subsequently, we deployed

our autonomous agent to steer the fixed-wing drone along the same 1 km coastline

in a fourth flight.

168



A.2.1 Infrastructure

We integrated the boundary tracking agent to steer the Unicorn UAV through

its commercial ground control software. Specifically, the drone’s heading direction

was regulated by repeatedly updating a single GPS waypoint, incrementally away

from the UAV’s location, in the desired heading specified by our agent. The bound-

ary tracker’s visual input comprised of analog-transmitted frames from the robot’s

onboard camera, which were digitized into a resolution of 320 × 240 pixels at a

10 Hz frame rate.

Figure A–3: The Unicorn UAV’s
integrated camera (black unit) is
attached to a gimbal and is pro-
tected by a transparent plastic
hull. We also secured an iPod
nano to the UAV’s underbelly
to record high-resolution flight
footage that are devoid of analog
transmission artifacts.

This onboard camera was mounted on a gimbal, as shown in Figure A–3. We

built a software controller to regulate the gimbal’s position and align its viewing

direction continuously with the gravity vector based on the onboard Inertial Mea-

surement Unit (IMU). This solution ensured that the camera frames were parallel to

the ground plane, thus minimizing perspective distortions. We separately mounted

an iPod nano on the vehicle’s underbelly to record high-quality and non-transmitted

aerial footage, with a 640× 480 pixel resolution at 30 Hz.

Although the drone’s camera positioning was constantly regulated to com-

pensate for roll, tracking the coastline boundary using frames received by ground

control was nevertheless challenging due to the presence of noise induced by the

analog video transmission. Concretely, types of noise included scan line artifacts,

color distortions, and frame tearing, as illustrated in Figure A–4.
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(a) (b)

Figure A–4: Analog frames received from the Unicorn UAV’s camera contain sig-
nificant transmission noise, including scan line artifacts and color distortions.

To cope with these practical issues, the initial implementation of the boundary

tracking pipeline looked for potential processing failures at two stages. Firstly, we

configured the segmentation stage to isolate blue-hue watery terrain specifically

and rejected frames that exceeded a prescribed range [Rwater
min , Rwater

max ] of sensible

amounts of watery regions in each frame. Also, the control mapping stage produced

planar heading commands in the direction of the boundary-line-to-image-border

intersection nearest to the front of the aerial vehicle. To ensure that this simplistic

controller did not produce jittery motions, we rejected frames whenever the steering

command changed abruptly, by imposing an upper bound on the maximum change

in magnitude between consecutive steering commands Rsteer
max .

A.2.2 Procedure

The target flight course, as depicted in Figure A–5, consists of a 1 km stretch of

shoreline on the tropical island of Barbados. This coastline path features multiple

terrain types with differing visual appearances, including sandy beaches, forested

patches, seaside buildings, and shallow coral reefs in the water.

After flying the UAV along the course three times using manual GPS way-

points, we extracted nearly 6000 frames from the iPod nano’s recorded videos. Each
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Figure A–5: Our fixed-wing UAV (red icon) executed multiple flights over a 1km
target stretch of tropical shoreline during our coastline tracking field trial.

frame t was processed through the boundary tracking pipeline, resulting in a corre-

sponding target heading direction φt ∈ [0◦, 360◦). We also asked five volunteers to

manually label a line in each frame corresponding to the coastline’s position, which

was then converted into a ground-truth heading direction φ̂t
i

per person i.

To quantify our autonomous agent’s coastline tracking performance, we com-

puted the steering error ∆φt of each frame t as the mean angular difference from

ground-truth headings. As baseline for comparison, we also calculated the inter-

human steering discrepancy ∆φ̂t as the mean pairwise heading differences among

human-labeled targets:

∆φt =
1

5

5∑
i=1

∣∣∣(φt − φ̂ti + 180◦
)
mod 360◦ − 180◦

∣∣∣ (A.1)

∆φ̂t =
1

(5− 1)!

5−1∑
i=1

5∑
j=i+1

∣∣∣(φ̂ti − φ̂tj + 180◦
)
mod 360◦ − 180◦

∣∣∣ (A.2)

A.2.3 Empirical Analyses

The inter-human steering discrepancy values shown in Figure A–6 suggest that

users strongly disagreed with each other in regards to the coastline’s location and

the target heading direction during the middle portion of each of the three manual
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flights. This disagreement was attributed to a long patch of shallow coral reef,

which blurred the exact water-land boundary. The fact that even humans could not

agree upon a consistent steering direction illustrates the inherent difficulty of the

general-purpose visual boundary detection task.
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Figure A–6: Inter-human
steering discrepancy
∆φ̂t among 5 volunteers
across 3 flight sessions
(˜6000 frames): even hu-
mans strongly disagreed
on the coastline posi-
tioning in some scenes,
notably for a patch of
shallow reef during the
middle of each session.

Using the collected aerial dataset, we separately analyzed the effects of the

minimum water ratio Rwater
min and the maximum steering change Rsteer

max parameters.

As shown in Figure A–7a, imposing strict requirements for minimum watery re-

gions in each frame did result in reduced steering error, although at the expense
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Figure A–7: The boundary tracking agent’s steering error ∆φt compared against
inter-human steering discrepancy ∆φ̂t, as functions of (a) the minimum water-
labeled frame ratio Rwater

min and (b) maximum steering change Rsteer
max parameters:

(b) reduced steering error without rejecting as many frames as (a).
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of a significant portion of rejected frames. On the other hand, Figure A–7b de-

picts similar attenuations to the steering error by tightening the maximum steering

change Rsteer
max , while preserving the majority of frames.

Furthering these analyses, we assessed per-frame boundary tracking perfor-

mance under two configurations that tuned performance separately based on the

minimum water ratio (Rwater
min = 0.5, Rwater

max = 1, Rsteer
max = 180◦), versus using the

maximum steering change parameter (Rwater
min = 0, Rwater

max = 1, Rsteer
max = 45◦). Our

empirical testing showed that the incremental-waypoint-based control scheme used

to steer the drone was tolerant to several seconds of regulation inactivity before

the UAV would fly out of range of the boundary target. Figure A–8a shows that

the former setting brought steering error to within 1.5 times of the corresponding

inter-human discrepancy data. Unfortunately, a large number of consecutive frames

were rejected (e.g. t ∈ [3500, 3800] and t ∈ [5550, 5850]), meaning that the UAV’s

heading would not be regulated for periods of up to 9 seconds. In contrast, the

latter pipeline configuration resulted in steering errors with a factor of 1.3 to the

inter-human discrepancies, and notably with a mean error of below 15◦, as seen
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Figure A–8: The boundary tracking agent’s steering error ∆φt compared against
inter-human discrepancies ∆φ̂t under two parameter configurations: (a) tightening
the minimum water ratio (Rwater

min = 0.5) gave decent performance (less than twice
of the mean inter-human discrepancy) but of dropping many consecutive frames;
(b) constraining the maximum steering change (Rsteer

max = 45◦) achieved superior
tracking accuracy, with at most 4 seconds of consecutive dropped frames, and only
for frames in which humans strongly disagreed with each other.
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in Figure A–8b. More importantly, the longest contiguous sequence of dropped

frames in this configuration was merely 4 seconds long (t ∈ [2900, 3100]), which

meant that the drone was constantly being steered.

A.2.4 Autonomous Flight Results

In light of the previous offline analyses, we configured the boundary tracking

agent with lenient rejection checks (Rwater
min = 0.35, Rwater

max = 0.8, Rsteer
max = 135◦)

and deployed it to control the UAV during a 4th flight session. As seen in Fig-

ure A–5, the UAV successfully flew alongside the 1km coastline segment, while

traveling at 14m/s ground speed and 150m altitude, and with a 7m/s lateral wind

condition. As the vehicle was about to reach its operating range at the end of the

flight, however, it came across a large shallow reef, which our boundary tracking

agent mistakenly labeled as land. Subsequently, the UAV flew toward the ocean,

and we thus had to disengage the autonomous agent and command it to fly back to

home base. Nevertheless, this flight session demonstrated that our visual navigation

robot agent was capable of tracking shorelines competently, while operating under

real-world and noisy flight and imaging conditions.

Based on the results of our empirical analyses and field evaluations, we con-

cluded that it was safer to refine the agent’s tracking performance via the heading-

based rejection criterion rather than via the cluster ratio check. Thus, in all sub-

sequent boundary tracking agent instances, we set the cluster rejection check to

a loose bound (Rclstr
min = 0.015, Rclstr

max = 0.975) to only reject frames that were

dominated by a single segmentation label. Also, we transformed the heading-based

criterion Rsteer
max into the maximum steering magnitude threshold, as discussed in

Section A.1.3. Whenever deploying the agent on a new robot platform, we tuned

this configuration parameter using evidence maximization, similar to the approach

carried out during the coastline tracking field trial.
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A.3 Summary

We developed a fully autonomous vision-based control framework for steering

mobile robots along the boundaries of various terrains or regions of interest. This

agent has an interpretable processing pipeline that combines classical image analy-

sis techniques with a feature-based control law. We deployed this autonomous agent

onboard a fixed-wing aerial robot, and successfully demonstrated fully autonomous

flight along a 1km coastline with varied terrains.

Reflecting upon our coastline tracking field trial, we hypothesize that the reef-

land confusion event may have been rectified if the operator was able to override

the agent momentarily and manually steer the UAV back toward land. Separately,

to prepare for this autonomous aerial tracking session, we had to collect a tedious

amount of flight footage, apply expert knowledge of the agent’s internal workings,

and ultimately choose a static setting that worked adequately across diverse task

conditions. We defined the attributes of a supervisor-worker human-robot team (see

Section 1.2) specifically to address these concerns. These issues also motivated our

development of an interactive behavior adaptation method for robot agents in Chap-

ter 3 that can learn from occasional interventions issued by non-expert operators.

Furthermore, the operator’s trust in the autonomous agent varied throughout

the fourth flight session. Since our analyses had previously revealed that tracking

reef-bound coastlines was challenging, we became extremely cautious while the

UAV flew above the large reef patch, and gained confidence after seeing it success-

fully navigated through the segment. This evolution in the degree of trust toward

the agent reflects our perception of its moment-to-moment task performance, and

can be useful both as an assessment tool and as a trigger for the agent to become

weary of potential challenging task conditions. In Chapters 4 and 5 we will quan-

tify and model this trust signal, and we will propose a means for the autonomous

agent to capitalize on trust toward maintaining efficient operations in Chapter 6.
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