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ABSTRACT

We are interested in asymmetric human-robot teams adhering to a “supervisor-
worker” relationship, where the human supervisor occasionally takes over control
to aid an autonomous robot agent in its given task. Our research aims to increase
and maintain efficient collaboration by improving the robot’s task performance,
decreasing the human’s workload, and sustaining high levels of satisfaction. We
address this problem through the lens of trust, which is pervasive among such
human-robot teams, and is inherently linked to all of the above efficiency facets.

Our contributions revolve around a novel “trust-seeking robot framework” that
augments an arbitrary robot agent with the abilities to sense and react to the hu-
man’s changing trust state. This framework includes a fluid interaction paradigm
that enables non-expert users to train and help robot agents adapt to changing task
conditions. We also elaborate on multiple large-scale user studies that investigated
factors from the interaction experience which influence the rapidly-changing dy-
namics of trust. Building upon these empirical insights, we propose a personal-
ized, probabilistic model for inferring the human’s moment-to-moment trust state.
This trust inference engine extends the two dominant modeling approaches used
in the literature, attains greater prediction accuracy compared to several existing
techniques, and features the unique ability to update trust beliefs in real time. We
further introduce the first-ever realization of robot agents that react in direct re-
sponse to the human’s trust losses and actively work to restore efficient teamwork.
Finally, we demonstrate the diverse efficiency gains of these trust-seeking robots
through both extensive controlled experiments as well as challenging real-world

field deployments with aerial drones, wheeled robots, and autonomous cars.
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RESUME

Nous sommes intéressés par les équipes homme-robot asymétriques qui adherent
a une relation < superviseur-travailleur > ou le superviseur humain prend de temps
en temps le controle du robot pour aider I’agent robotique autonome dans sa tache.
Notre recherche vise a augmenter et a maintenir des collaborations efficaces par
I’amélioration de la performance du robot, la réduction de la charge de travail du
superviseur, et le maintien d’un niveau de satisfaction élevé. Nous abordons ce
probléme en utilisant la perspective de la confiance, qui est répandue parmi les
équipes homme-robot, et est liée de facon inhérente a toutes les facettes précédemment
citées de I’efficacité.

Nos contributions sont centrées autour d’un nouveau < systeme de 1’agent ro-
botique fiable > qui améliore un agent arbitraire en lui conférant des capacités de
détecter et de réagir a I’état changeant de la confiance de I’humain. Ce systeme
comprend un paradigme d’interaction fluide qui permet aux utilisateurs non-experts
d’aider les agents a adapter a leurs conditions de taches changeantes. Nous présentons
€galement plusieurs études contrdlées a grande échelle pour enquéter sur les fac-
teurs provenant de 1I’expérience d’interaction qui influencent la dynamique a court
terme de la confiance. Equipés de ces connaissances empiriques, nous proposons
un modele probabiliste personnalisé pour inférer 1’état de la confiance de I’humain
a chaque instant au cours des interactions. Ce modele de la confiance étend les
deux approches de modélisation dominantes utilisées dans la littérature, et atteint
des prédictions de I’état de la confiance plus précises par rapport a plusieurs tech-
niques existantes. Ce modele offre aussi la particularité unique de mettre a jour ces

estimations de la confiance en temps réel. En outre, nous introduisons la premiere
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réalisation d’agents robotiques qui réagissent directement aux pertes de la confi-
ance provenant de I’humain, et qui travaillent activement a rétablir une collabora-
tion efficace. Enfin, nous démontrons les divers avantages d’efficacité de ces agents
robotiques fiables a travers plusieurs études contrdlées, et nous avons également ef-
fectué des déploiements dans des environnements difficiles avec des drones aériens,

des robots a roues, et des voitures autonomes.
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Chapter 1
Introduction

This thesis is motivated by the desire to establish and maintain efficient col-
laboration between autonomous mobile robots and their human users. There are a
wide variety of robot platforms with autonomous capabilities in common use to-
day, including aerial drones, sea gliders, and household cleaning robots. Manned
vehicles are also being equipped with increasingly sophisticated autonomous capa-
bilities, such as adaptive cruise control and auto-steering for cars, as well as auto-
mated takeoff, landing, and navigation features for aircraft. These mobile robots
all require the collaboration of one or more humans, either remotely or on site,
that are responsible for deploying, monitoring, and possibly guiding these robots to
complete their tasks, as seen in Figure 1-1.

Research on mobile robots and vehicle automation have been primarily fo-
cused on enhancing their capabilities and task performance. Such efforts are essen-
tial toward maximizing the efficiency of these human-robot teams. Nevertheless, an
equally vital yet often overlooked related aspect is the interaction between robots
and their human operators. Rich and frequent interactions allow teams to synergize
effectively, by coupling the robot’s comprehensive planning and rapid execution ca-

pabilities together with the human’s innate problem-solving and decision-making



(¢) SL-Commander Smart Car [10] (d) Husky Wheeled Platform [76]

- “‘5'& :

(e) Aqua Swimming Robot [28] (f) Heron Autonomous Vessel [75

Figure 1-1: Our research aims to establish efficient interactions and teamwork be-
tween humans and autonomous mobile robots operating in diverse domains.

skills. Such team synergy is especially important for coping with dynamic or un-
expected changes to the task objectives and the environmental conditions. Conse-
quently, our research in this thesis will aim to simultaneously improve task per-
formance as well as enforcing high level of user satisfaction, toward maintaining

efficient team collaborations.



1.1 The Roles of Trust

We postulate that trust — one’s belief in another’s competence and reliability
— is the cornerstone of all long-lasting collaboration, both among human team-
mates, as well as between humans and robots. This view is grounded on the vital
roles that trust occupies within the workplace, for instance between a lead engineer
and a junior assistant. Strong degrees of trust allow the lead engineer to confidently
delegate tasks to the assistant while undertaking other duties in parallel. On the
other hand, if the lead distrusts the assistant, then he might be inclined to double-
check or repeat the delegated task. In extreme cases, the senior engineer may even
cease to delegate tasks altogether and choose to work alone.

These scenarios also occur in human-robot teams that are characterized by
similar asymmetric relationships. Imagine an example of a driver is experiment-
ing with the automated lane-keeping feature of her new car. Despite being initially
anxious when engaging the autopilot, she slowly builds confidence as the vehicle
continues to drive smoothly on the road on its own. Suddenly, another vehicle
approaches the left side aggressively, and the self-driving car reacts by abruptly
swerving to its right to make way. Although both vehicles continue to operate
safely, the autonomous car’s driver, however, is taken back by the sudden jerk mo-
tion and thus decides to switch off the autopilot until the aggressive motorist speeds
away. This scenario demonstrates that as trust accumulates, the user increases the
degree of dependency and task delegation toward the autonomous robot, while in
contrast, trust losses can cause the human to disregard the robot in favor of man-
ual execution. Moreover, on an even broader scope, this example illustrates the
essential and pervasive natures of trust as seen in our everyday interactions with
automated systems onboard vehicles and other embodiments.

It is important to acknowledge that trust influences human-robot teams in more

ways than one, similar to its influences at the workplace. The previous scenarios



focused on the impacts of trust on the performance of an individual’s work. A dis-
tinct way that trust affects relationships is by putting into question one’s intentions,
ethics, or integrity [42]. These intention-centric elements naturally carry over to
human-robot teams as well: for instance, the driver in our autonomous car scenario
may be concerned that the vehicle’s controller might not always make his well-
being the highest priority. These concerns are often driven by survival instinct, and
some would further argue that these fears are justified based upon age-old philo-
sophical paradoxes such as the trolley dilemma [61]. In particular, researchers have
found that while users approved of autonomous cars with utilitarian or “Vulcan™!
mindsets, they would personally prefer to ride in vehicles that protected passengers
at all costs [8]. The complexities of these issues speak to the richness of the notion
of trust as seen in human-robot teams.

On the other hand, this thesis focuses purely on ‘“performance-centric”
facets of human-robot trust. Despite having fewer profound quandaries, we be-
lieve that these aspects are more amenable to be modeled by rational and math-
ematical principles. Consequently, all of our empirical studies included explicit
instructions assuring that our robot systems were programmed solely to complete
tasks and duties in a subservient and non-adversarial manner.

Returning to the workplace scenario, a conscientious assistant would be able
to infer a sense of distrust by observing the lead engineer’s actions, or more specif-
ically, a reduction or lack in task delegation. Consequently, this assistant would

then try to change behaviors and improve performance, in order to seek to regain

! The fictitious Vulcan race in the Star Trek franchise is known for having logical
and utilitarian mindsets, with a famous quote from the popular character Spock:
“Logic clearly dictates that the needs of the many outweigh the needs of the few.”
Similarly, an utilitarian autonomous vehicle will risk the life of its passengers in
collision situations that would otherwise harm a greater number of pedestrians.



the lead’s trust (and avoid being re-assigned or demoted). We thus observe that not
only is trust useful for characterizing the nature of collaboration, the need to seek
trust creates additional types of interactions for maintaining healthy teamwork.

Our research capitalizes on the diverse roles of trust to enforce efficient col-
laboration for asymmetric human-robot teams. We use trust to gauge the quality
of existing interactions between human operators and autonomous robots, and also
imbue robots with adaptive behaviors for eliciting trust and preserving ongoing
teamwork. This “trust-seeking robot methodology” is driven by the core belief
that if humans can remedy their mistakes to regain others’ trust, then robot agents
should be able to capitalize on this capacity as well!
1.2 Interaction Context: Supervisor-Worker Teams

This thesis targets two classes of asymmetric human-robot teams, namely re-
motely operated autonomous robots and manned vehicle with autonomous capabil-

ities. In both classes, the human and robot exhibit a supervisor-worker relationship

observation
manual

control

Actuator
action 0 autonomous

l ic II 2 control @ II

image

Figure 1-2: In a supervisor-worker team, the autonomous agent onboard the mobile
robot senses the state of the world (e.g. using a camera) and generates control
commands to the vehicle’s low-level actuator. Meanwhile, a human supervises the
robot’s task performance by observing its behaviors, and can also issue intervening
control signals to the robot’s actuator. A command multiplexer (MUX) ensures that
the supervisor’s interventions always supersede the agent’s commands.



and interact following a supervisory control scheme [84], as illustrated in Figure 1—
2. under typical operations, the autonomous agent onboard the mobile robot as-
sumes responsibility for controlling the vehicle’s actuators, toward accomplishing
a given task. All this while, the human “supervisor” passively monitors the robot’s
actions to ensure that adequate task progression is made. In certain situations, the
human may also choose to infervene to assist or correct the robot agent, by taking
over manual control of the vehicle’s actuators for a period of time. We assume that
both the human and the robot agent are always working collaboratively toward a
set of common task goals.

The “agent” block depicts a generalized encapsulation of one or more au-
tonomous robot systems that ultimately send commands to the vehicle’s low-level
actuation controller. These elements can incorporate sensor-based perception units,
mapping, localization, and planning modules, machine learning policies, and/or
feedback control laws. Examples of such agents include a car autopilot that incor-
porates data from laser range-finder, camera, and other sensors to generate throttle,
brake, and steering commands [92], or an aircraft navigation unit that stipulates de-
sired vehicle velocity and pose to guide it along a set of Global Positioning System
(GPS) waypoints. These complex systems often have many configurable parame-
ters, and our research assumes that each robot agent’s parameters can be program-
matically updated to alter its behaviors dynamically, as a means for giving it new
trust-seeking capabilities.

The “actuator” block in Figure 1-2 is an abstraction for low-level controllers
that regulate the robot’s motors and actuators. We distinguish these components
from the “agent” block since vehicular controllers are typically provided by the
robot platform’s vendor and thus are often treated as black-box systems with pre-

dictable responses and which do not need end-user tuning. Furthermore, expressed



in terms of the human’s trust toward the robot, we assume that the supervisor al-
ways has full confidence in the actuator block’s correctness of operations.

Our research focuses on human interventions that are specifically in the form
of control-level commands to the mobile robot’s actuators, as opposed to targets
at higher levels of abstraction such as waypoints or task goals. Thus, interactions
conforming to our definition of a supervisor-worker relationship can be classified
as a subclass of supervisory control that involves “continuous closed loop systems
with fast dynamics” [63]. Although limiting the communication modality to such
low-level control may appear overly restrictive and mundane, often humans are al-
ready familiarized with this form of interaction, as can be seen when the supervisor
takes over the steering wheel from a self-driving car agent. More importantly, the
availability of a continuous stream of input from the human will turn out to be a
vital precursor for the robot agent to sense and thus seek the human’s trust in real
time, as will be discussed in Chapter 5.

In this interaction context, several types of situations can cause humans to in-
tervene. For instance, the robot agent may sometimes fail to perform its duties to
the human’s level of satisfaction. In other circumstances, the supervisor may real-
ize that the agent has reached a limitation in its programming and thus require addi-
tional help to overcome challenging task conditions. As an example, an aerial drone
may struggle to navigate directly toward its GPS waypoint under strong headwind,
and so the human may decide to manually steer the vehicle in a snake-like trajec-
tory to make incremental progress toward the target. Another cause for intervention
arises when the supervisor wishes to change the agent’s current task objective by
demonstrating actions toward a different task target.

The multiplexer (MUX) block in the diagram is used to ensure that the supervi-
sor’s intervening commands will always supersede those of the autonomous agent.

As a corollary, we also assume that the robot will always execute the supervisor’s



commands without questioning their validity. Consequently, our research focuses
solely on exploring the directed trust link from the human supervisor to the robot
agent, while studies of reciprocal trust and related concerns such as the safety of
the supervisor’s commands [81] are beyond the scope of this thesis.

Aside from interventions, the human may also wish to convey assessments
about the agent’s performance throughout operations. Concrete instances include
giving critiques such as praise or criticism to a recent action or event, and providing
feedback by verbalizing their current degree of trust in the agent. These communi-
cation modalities are seen in workplace settings as well, and they can help the team
establish a common understanding and synergize toward common task goals.

1.2.1 Collaborative Visual Navigation Tasks

Our investigations in this thesis are grounded on the task domain of collabo-
rative visual navigation. Despite this focus, we studied human-robot trust from a
platform-independent and application-agnostic manner, to accommodate supervisor-
worker teams in other task domains as well. With that said, all of our robot agents
are built upon a generalized vision-based boundary tracking framework (see Ap-
pendix A). To demonstrate the generalized nature of our solutions, we evaluated
these agents onboard multiple aerial and terrestrial platforms, and targeted both
terrain coverage as well as trajectory patrol tasks.

Visual navigation problems are natural research fits for human collaboration
and interaction, since we humans innately excel at many vision-based tasks. Also,
since cameras are among one of the most prevalent sensors in robots, using this
modality enables our trust-seeking robot agents to be deployed onboard a range of
different robot platforms. Furthermore, the necessary sophistication and complex-
ity in autonomous visual navigation solutions [60,71] can often lead to uncertainties
about its internal processes, and therefore naturally warrants the need for the human

supervisor to build trust in a robot agent.



1.3 Research Methodology: Toward a Framework for Trust-Seeking Robots

There are multiple ways to imbue autonomous agents with trust-seeking ca-
pabilities in supervisor-worker teams. One strategy is to design and constrain the
types of interactions between the human supervisor and the robot agent as means
to encourage team-building and trust. For instance, adding visualizations of the
agent’s perceived view of the world, internal state, and output commands might
help the human better understand the agent’s reasoning process and take notice of
its capabilities and limitations. By baking such types of transparencies [56] into the
interface and interaction scheme at design time, the supervisor at deployment time
would be able to better identify which task instances are appropriate to delegate to

the robot and which conditions require manual assistance.
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Figure 1-3: Our trust-seeking robot framework enhances a plain supervisor-worker
team with trust modules serving diverse purposes. These modules update the
agent’s parameters to adapt to occasional human interventions, infer the supervi-
sor’s level of trust in the robot based on reactions and feedback, and help the robot
agent regain lost trust by altering its behaviors.

As shown in Figure 1-3, another family of approaches entails augmenting the
robot agent’s existing programming with new modules to generate behaviors dy-
namically that incite trust or mend trust losses. As a precursor to such trust-induced

behaviors, a robot must first be able to sense or infer the human’s degree of trust
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on a moment-to-moment basis. The agent can then alter its behaviors momentarily
when the supervisor’s inferred trust signal drops, for instance to engage the human
for assistance during challenging task conditions. The agent can also adapt its ac-
tions in a committal manner by learning from occasional human interventions to
improve task performance as well as build a trusting bond.

These online adaptation strategies make the robot agent react to the human’s
trust changes directly and explicitly. In contrast, the previously discussed design
principles such as interface transparency aim to enhance usability, situational aware-
ness, or other factors, which in turn are indirectly correlated to greater trust [80].

This thesis will investigate all of the approaches above toward developing
trust-seeking robots, including designing and analyzing trust-building interaction
schemes, modeling and inferring the human’s dynamic trust state, and developing
trust-induced robot behaviors. These will involve research efforts in the realms of
cognitive Human-Robot Interaction and Machine Learning. We will address several
key theoretical problems and technical challenges, including:

1. How to adapt an arbitrary existing robot agent to behave similarly to the hu-
man’s occasional intervening control commands, especially when task con-
ditions and goals change over time?

2. Which factors from the interaction experience influence the supervisor’s trust
dynamics, and what are the relative importances of the influences among
different factors?

3. How to infer changes to the human’s trust state online so that the robot agent
can then react to these changes promptly?

4. How to alter a mobile robot’s actions in a platform-agnostic way toward re-

gaining lost trust?
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1.4 Contributions

This thesis will present solutions to each of the problems listed above in turn,
namely:

1. Adaptation from Participation (AfP): a paradigm that encourages fluid in-
teractions and also calls for the robot agent to adapt to occasional intervening
commands from the supervisor, toward coping to changing task conditions as
well as encouraging the building of human-robot trust indirectly;

2. Trust factor analyses of typical interaction experiences for supervisor-worker
human-robot teams, with a particular emphasis on characterizing trust dy-
namics at diverse time scales;

3. Online Probabilistic Trust Inference Model (OPTIMo): a real-time, per-
sonalized trust model that captures dynamics at arbitrary time scales and also
attains superior prediction accuracies over existing methods;

4. Trust-Aware Conservative Controls (TACtiC): a control alteration strategy
for the general class of locomotive-centric robots that realizes the first-ever
instantiations of robot agents that react in direct response to salient trust
losses from their human supervisors.

We tailored the expositions on these interaction paradigms, empirical find-
ings, and software systems to appeal to various types of readers. For instance,
we elaborated on the iterative designs of several user studies and robot field tri-
als for collecting extensive empirical evidence to support our trust analyses. We
also demonstrated the application of Bayesian probability principles to capture and
unify influences from multiple sources of interaction signals into timely trust esti-
mates for the supervisor. Furthermore, we provided end-to-end technical details for
all of our trust-seeking robot agent implementations.

These developments have also led to the following auxiliary contributions:
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5. Boundary tracking agent: an autonomous visual navigation controller de-
sign, with instances deployed on aerial, terrestrial, and marine robots (in-
cluding all of the platforms depicted in Figure 1-1) to guide along arbitrary
boundaries of visually homogeneous terrains;

6. Adaptive Parameter EXploration (APEX): an online, anytime algorithm
for realizing the AfP paradigm with an arbitrary parametrized robot agent;

7. SightedTurtleSim: an open-source robot simulator [96] that is integrated
with the Robot Operating System (ROS) software ecosystem; this framework
simulates planar-locomotive robots such as aerial or underwater vehicles, and
synthesizes frames from their bird’s-eye view cameras using real satellite
imagery;

8. Four large-scale interaction studies that investigated human-robot trust and
quantitatively evaluated our trust-seeking robot agents, involving a total of
112 participants across 7 Canadian institutions with diverse backgrounds;

1.5 Statement of Originality

Parts of my research in this thesis have been published in peer-reviewed inter-
national conference venues [98—104,106]. Aside from my own research and devel-
opment efforts under the guidance of my supervisor Professor Gregory Dudek, sev-
eral colleagues have also made key contributions as well. Arnold Kalmbach assisted
in the developments and deployments of the APEX aerial coverage user study and
campus patrol field trials, which will be presented in Chapter 3. Professor David
Meger provided a ROS-based software interface for controlling the SL-Commander
vehicle, and both he and Qiwen Zhang assisted in the deployment of the APEX in-
teractive driving field demonstration, as will be discussed in Chapter 3. Professor
Joelle Pineau provided invaluable guidance in the research that evolved into OP-
TIMo’s Dynamic Bayesian Network formulation of a real-time human-robot trust

model, which will be elaborated on in Chapter 5.
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1.6 Outline

Chapter 2 elaborates on background material, including fundamental traits of
human trust, research on human-automation trust and human-robot trust, surveys
of trust elicitation and learning methods, and overviews of the robot platforms em-
ployed in our evaluations. This chapter also enumerates and justifies the key as-
sumptions used to form the foundations of our research.

All of the robot agents in this thesis are built upon a general-purpose bound-
ary tracking controller that we developed. Implementation details on this vision-
based robot navigation system are elaborated in Appendix A, in order to focus the
main thesis content on trust-related topics. The curious reader should also note
that this appendix describes and reflects upon an initial set of robot field evalua-
tions, which historically and personally motivated many of our human-robot trust

research thrusts in this thesis.
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Figure 1-4: Our main research contributions in this thesis entail multiple elements
within a supervisor-worker team enhanced with a trust-seeking agent. These mod-
ule also map to individual thesis chapters (magenta-shaded blocks).

As depicted in Figure 1-4, each of our four primary thesis contributions are
discussed in turn in separate chapters. Chapter 3 introduces the Adaptation from

Participation interaction paradigm and describes a corresponding module that adapts
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the boundary tracking agent’s behaviors dynamically. This scheme allows the agent
to imitate intermittent steering signal from the supervisor as an implicit means to
seek trust. In contrast, Chapter 4 sows the seeds in a three-stage explicit trust-
seeking research thrust that starts with a set of interaction studies of typical in-
teraction experiences and trust evolutions for supervisor-worker teams. Chapter 5
uses key insights from these interaction studies to synthesize a personalized and
real-time trust inference engine. Armed with this engine, Chapter 6 describes a
strategy for our robot agent to react to the supervisor’s inferred trust state, toward
remedying situations where the human lost trust and maintaining healthy collabora-
tion. Finally, Chapter 7 discusses consequences of our contributions and highlights

follow-up research topics.
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Chapter 2
Background

The first half of this chapter begins by elaborating on the characteristics of our
supervisor-worker team structure and discussing related interaction contexts within
the fields of Human-Robot Interaction and Human-Automation Interaction. We
next present an overview of the vast literature on the human notion of trust and
also highlight existing trust research in human-robot interaction literature. In par-
ticular, this exposition on trust will highlight dominant attributes that are pertinent
specifically to supervisor-worker human-robot teams. Next, we survey existing ap-
proaches for developing robot systems that seek to establish trusting relationships
with their human collaborators. Following these discussions, we summarize the
various fundamental assumptions regarding trust and supervisor-worker teams em-
ployed by our research.

The second half of the chapter focuses on more practical topics. In particular,
we survey related research on autonomous robot systems for vision-based naviga-
tion tasks similar to the concrete implementations of our trust-seeking agents. We
also elaborate on the diverse mobile robot platforms used to empirically evaluate
our research efforts toward realizing efficient trust-seeking robots.

2.1 Characterization of Asymmetric Human-Robot Teams

Among the oldest modes of interaction between human operators and robots

(or more generally, automation software) is “teleoperation” or “manual control” [84].

In these systems,the human uses a controller to send signals to the robot’s actuators
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while data from its sensors are visualized via a display. In contrast, modern human-
automation configurations include a software “agent” that interacts with available
sensors and actuators independent of the human’s control signal.

One way to characterize types of interaction with these agents is by specifying
their “level of autonomy” (LOA), which reflects how much independent responsi-
bilities are given to the agent. For instance, Sheridan and Verplank’s LOA scale [85]
contrasts agents that recommend actions to the operator to execute, from those that
can execute actions on their own and inform the operator, to those that act under full
autonomy while ignoring the human. Goodrich and Shultz proposed another LOA
scale with an explicit emphasis on human interaction [38]. As shown in Figure 2—1,
their classification distinguishes teleoperated systems with little or no mediation by
the agent, from relationships where the human supervises and occasionally inter-
venes in the autonomous agent’s operations, and from teams where the human and

robot act independently and jointly toward a common set of task goals.
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Figure 2—1: Goodrich and Shultz’s classification of levels of autonomy with em-
phasis on human interaction (replicated from [38]).

The supervisor-worker relationship that our research focuses on falls under the
classification of “supervisory control”. Nevertheless, this term has been defined in
very broad terms, for instance referring to “one or more human operators [that]
are intermittently programming and continually receiving information from a com-
puter that itself closes an autonomous control loop [...]” [84]. Due to its broadness,

researchers have applied this term to refer to many types of interaction schemes.
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Endsley and Kaber proposed a distinction between ‘““shared control” from “supervi-
sory control” [30]: in the former case, both the human and computer agent bear re-
sponsibility of generating and implementing actions toward accomplishing a given
task. On the other hand, in the latter context these duties are delegated to the agent,
while the operator occasionally intervenes by selecting alternative actions. Yanco
and Drury also described a supervisory role as one in which the human “needs to
monitor the behavior of a robot, but does not need to directly control it” [109].

Another limitation of the broad definition of supervisory control is that it does
not prescribe the level of abstraction for the commands issued by the human to the
autonomous agent. To illustrate this, consider distinct schemes in which a human
remotely supervises an aerial drone: for instance, the operator could stipulate a
mission-level end-goal such as reaching a final destination or carry out aerial cov-
erage of a designated region [105]. Alternatively, the human could specify a set of
task-level actions such as GPS waypoints for the robot agent to follow [20]. In a
third instance, the supervisor could enact control-level interventions by teleoperat-
ing the vehicle [99].

In this thesis, we define the “supervisor-worker team™ as a supervisory control
context where human interventions take on the form of control-level commands.
This interaction context can also be (less succinctly) characterized as “continuous
closed loop systems with fast dynamics” [63]. We specifically targeted this level of
interaction as it can be related to rapid fluctuations in the human’s trust state, as we
shall elaborate in Chapter 5. Therefore, this type of continuous interaction signal
provides a vital opportunity for estimating trust in real time, which subsequently
enables robot agents to promptly react to changes in their supervisors’ trust state.

The interactions within a supervisor-worker team are also related to the con-

cept of “sliding autonomy”, or equivalently, “shared autonomy”. Sliding autonomy
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refers to the ability of an autonomous agent to share control over the robot’s ac-
tuators with another individual such as a human or robot partner. Brookshire [9]
showed that a human-robot team using sliding autonomy can achieve better task
performance compared to either a purely teleoperated system or a fully autonomous
robot. Dias et al. [25] similarly found that enabling sliding autonomy within a
peer-to-peer human-robot team led to an improvement in task completion times
and reduced number of mistakes. Dragan and Srinivasa [27] established a unifying
formalism of policy blending for sliding autonomy systems, where action policies
from a human expert and a planning algorithm are combined to produce optimal be-
haviors. Using policy blending, the authors developed a robot manipulator planner
that generates trajectories by estimating the intent of human-demonstrated motions.

The systems cited above shared “control-level” autonomy over the robot’s ac-
tuators just as in supervisor-worker teams. Other sliding autonomy instantiations
have generalized this binary control authority state to multiple levels of auton-
omy [20,23]. A closely related concept is that of “mixed-initiative control”, which
also encourages the sharing of autonomy, but places further emphasis on whether
the human or the robot agent initiates control [11]. In the above systems, the human
and/or the agent are given the ability to toggle between different levels of command
abstractions dynamically, for instance switching from control-level interventions to
task-level commands when tackling simple task conditions. Generalized sliding au-
tonomy instances represent rich and powerful interaction schemes with the capacity
to optimize the moment-to-moment control allocation strategy. Nevertheless, relat-
ing commands at higher levels of abstraction to the supervisor’s dynamic trust state
is beyond the scope of our research.

Two other attributes of human-robot interactions that are important to our trust
research entail the human-robot spatial relationship (i.e. co-located or remote) and

task criticality (i.e. whether failures affect the human’s physical safety) [109]. As
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Chapter 6 will discuss, we observed notably different trust responses and behav-
iors from supervisors between a user study with a remotely operated aerial vehicle,
versus a field trial with an autonomous car transporting the human within.

2.2 Trust

Trust is a highly rich human phenomenon that brings forth myriad interpre-
tations, constructs, and cognitive as well as emotional responses [62]. These el-
ements of trust have been analyzed from many perspectives, such as societal and
political views [42], workplace and management aspects [17], as well as for per-
sonal relationships [52]. Others have also studied characteristics of an individ-
ual’s trust within online commerce setting [111], trust toward general information
technologies [16,55], as well as trust toward robots and software automation sys-
tems [41,57]. Given this vast diversity of disciplines studying trust, different pro-
posed theories often have unique aspects that are pertinent to their specific contexts,
and may even be at odds with alternative formulations. In this section, we provide
a brief overview of the main attributes of trust that are commonly applicable across
diverse human contexts, before focusing on human-robot relationships.

2.2.1 Fundamentals of Human Trust
One of the most important points of distinction lies in the two separate roles
of trust, as either a utility mapping or an end-state of the human decision process:
e The degree of trust is a quantifiable assessment toward another individual,
e whereas the act of trust reflects the decision and behavior of relying on an
individual’s abilities or services.

Both notions are instantiated for a given point in time, and we use the term
“trust state” to denote the degree of trust at a particular time instant. Also, both the
degree of trust and the act of trust can be related to a specific goal, be it a desire,
need, task, or objective [31]. The specificity of trust toward concrete goals is of

particular importance when reasoning about trust in robots, since typically these
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systems are built to accomplish a specific set of tasks. For instance, the notion of
placing trust in a vacuum cleaning robot usually implies the task of sweeping the
floor. Furthermore, one would generally not share the same degree or act of trust
for a different goal. Continuing along our example, we would not likely trust the
same vacuuming robot to open doors and greet guests.

The degree of trust measures the amount of a truster’s assessment of a trustee’s
abilities. This measure can be affected in two ways: through direct experiences or
via delegation. In the former case, the truster builds confidence by interacting with
the trustee and evaluating the quality of this direct engagement. In the latter case,
trust delegation [13] refers to the use of assessments from a third-party “witness” to
assess a trustee indirectly. When adopting the witness’s recommendations toward
the trustee, the truster must further account for his personal assessments of the
witness’ reliability.

Both types of trust updates can be seen as discrete transactions over one’s
historical experiences. Consequently, these updates can be accumulated over the
interaction history to characterize the truster’s prior degree of trust for a given
event. These trust states can be further influenced by personality factors that are
not driven by utility-theoretic means, such as society-induced predisposition, or

personal faith [62].

Table 2—1: Classifications for the basis of trust toward different trustee types.

Human Information Artificial | Automation
Employee [17]| Technology [16] | Agent [31] | System [57]
P erformqnce- resql'ts. comp eter.K.:G ability | performance
centric capabilities predictability
intention- intent positive intentions | ... process
. . : . willingness
centric Iintegrity ethics purpose

Another prominent topic studied in social sciences is the characterization for
the basis of trust. Table 2—1 highlights several proposed categorizations of these

bases, while a more exhaustive survey can be found in [57]. When dealing with
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a non-human, software-based trustee, applicable bases can be categorized into two
broad dimensions: typically, one’s trust toward a robot agent or automated tool is
based on constructs related to task performance, such as their accuracy and con-
sistency in carrying out an assigned task. These concepts are in stark contrast to
factors associated with the trustee’s intentions, which pertain to the software sys-
tem’s general integrity and benevolence toward performing an assigned task.

The trust state is a personal attribute of the truster, and therefore only she will
have mental access to the actual trust state. Although the truster can introspect
and express this cognitive state, these assessments are subject to potential biases
and noise resulting from the human decision process and caused by answer for-
mats in questionnaires [15]. Nevertheless, the trustee can maintain an inferred trust
state by either accepting the reported trust feedback or by combining these with
observations of the truster’s actions. In Chapter 5, we will demonstrate a concrete
instantiation of this trust inference process based on diverse interaction factors that
accounts for several forms of noise and biases in their values.

Due to personality-based factors, trusters may form differing opinions about
the trustee after experiencing the same sequence of interactions. By eliminating
these truster-dependent variations, what remains is arguably an objective assess-
ment of the frustworthiness based purely on the trustee’s demonstrated performance
and interaction experiences. Some of the proposed models for human-robot trust
(e.g. [34,40,56]) adhere to this causal attribution approach [50].

2.2.2 Trust Assessment Toward Robots

Studies of trust in Human-Robot Interaction (HRI) historically evolved out of
a multi-decade literature investigating interactions with automation systems and in-
formation technology. Nevertheless, engaging a physically-embodied robot agent
is significantly richer than dealing with an online commerce agent or a piece of au-

tomation [109]. Many of these robots operate in dynamic and noisy environments
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that impose significant difficulties on localizing their positions and assessing their
task performance. Such noise, including poor visibility, unexpected obstacles, and
intermittent communications, are typically not present in the structured environ-
ments of software systems, such as a grammar checker or an email spam filter.

Another crucial distinction is that robots have the potential of inflicting phys-
ical damage to tangible objects and the real-world environment. Consequently,
human operators tend to behave differently given that they may be blamed for these
physical damages, or worse yet if there is a high likelihood that they may be injured.

A common motivation for studying trust toward automation and robots is ul-
timately to devise techniques for detecting, preventing, and mitigating instances of
distrust (i.e. lack of trust) or mistrust (i.e. excessive trust) toward these systems. In
extreme cases, such mis-calibrations of the degree of trust in automation have led to
fatal accidents, for example in train derailments where the automated alert systems
were disabled due to prior false alerts [69].

Many research groups have quantified how a human operator’s trust toward
a robot can be affected by a wide range of factors, including task performance
and errors [21, 29, 36], the nature of these failures [7, 26, 79], the human’s self-
confidence [56], the operator’s mental load [29], and the control allocation strat-
egy [34,36]. Hancock et al. [41] carried out a meta-analysis of empirical results
from these and other HRI trust studies to establish quantitative estimates of various
factors influencing trust across different interaction domains.

The vast majority of human-robot trust research, including those above, are
concerned with “performance-centric” attributes of trust. Arkin et al. [4] ventured
into the seldom-explored realm of “intention-centric” trust bases by proposing a
framework for robot agents to act deceptively via false communication. The authors

suggested potential utilities in military contexts as well as health-care robotics (e.g.
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deceiving an Alzheimer’s patient to administer treatment), although current work
has been limited to theoretical contributions only.

Our investigations into human-robot trust in this thesis are closely related to
the work by Desai et al. [23, 108], who carried out a multitude of investigations on
trust within an urban search-and-rescue setting. The authors quantified the effects
on trust from many interaction factors, including the level of autonomy, the reliabil-
ity of the robot agent, and the situational awareness afforded by the user interface.
These efforts culminated in a set of trust-sensible design guidelines for robot agents
and interfaces, as well as a comprehensive Human and Autonomous Remote Robot
Teleoperation (HARRT) model that relates myriad interaction factors to a trust as-
sessment scale [64]. The authors acknowledged that this regression-based model
has limited capability in predicting the human’s trust state dynamically, and have
also expressed desires to expand efforts toward real-time trust modeling and trust-
calibrating agent behavior modifications. Our research has realized both of these
capacities, as will be demonstrated by the online trust inference engine in Chapter 5
and the trust-induced control alteration strategy in Chapter 6.

Finally, several studies (e.g. [24,41,56]) have highlighted the influences on the
degree of a human’s trust in a robot originating from diverse factors, such as:

e the human’s demographic attributes: e.g. age, gender, occupation;

e the human’s attitudes and experiences: e.g. propensity to trust robots, prior
experience with robots and with task setting;

e the human’s perception of robot attributes: e.g. adaptability, benevolence;

e the robot’s task performance: e.g. amount of algorithmic failures, frequency
of task errors, types of errors;

e attributes of the interaction setting: e.g. communication quality, task com-

plexity.
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2.2.3 Computational Models of Human-Robot Trust

Diverse representations have been proposed to quantify the degree of trust in a
robot agent or a software automation system. In their survey on human-automation
trust [63], Moray and Inagaki identified five classes of models:

1. regression using trust factors at a fixed time instant;

2. time series modeling of trust dynamics;

3. qualitative relationships among trust factors;

4. rule-based representation of the decision-making process;

5. neural network modeling attempts based purely on evidence maximization.

Proposed model representations include binary [40] and continuous [34, 56]
measures that characterize the robot’s trustworthiness caused by its performance,
as well as ordinal scales [47, 64, 68,82, 107] used to elicit evidence of a person’s
actual amount of trust. Each representation has its own merits and drawbacks, and
there is no “true” model since trust is intrinsically a non-observable construct.

Uncertainty plays a major role in characterizing trust towards robots, as au-
tomation researchers have agreed that trust enables collaboration with complex and
hard-to-predict agents [40]. Otherwise, lingering uncertainties about the robot’s be-
haviors and intentions would require immense effort in rational reasoning based on
extensive direct experiences alone [13].

A common theme among several trust models is the distinction between mis-
trust and uncertainty, i.e. knowing with full certainty that an agent will perform
poorly is different from inferring that the agent may sometimes misbehave. De-
pending on the application and context, trust can be modeled against mistrust [51],

against uncertainty [31,40], or against both [49].
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Many of the studies above described the human’s degree of trust toward the
robot through correlations with past interaction experiences and subjective assess-
ments, although few are capable of predicting a human’s trust state during oper-
ations. Lee and Moray presented a temporal model for relating trust assessments
to task performance in a human-automation context, using an Auto-Regressive and
Moving Average Value regression approach (ARMAV) [56]. Desai and Yanco [23]
conducted a series of robotic search and rescue experiments during which users
were asked to report at regular intervals whether their trust state has increased, de-
creased, or remained unchanged. These signals were quantified as {+1, —1,0} and
integrated over time to obtain the Area Under Trust Curve (AUTC) measure. Our
research has produced two temporal trust models (see Section 4.2.5 and Chapter 5)
using similar approaches. Notably, Section 5.4 will present a quantitative perfor-
mance comparison of all these models.

2.3 Trust Elicitation in Human-Robot Teams

There are two existing classes of techniques for improving the degree of trust
and encourage the act of trust in human-robot teams. One class consists of configur-
ing the interaction scheme with the robot agent at design time, following established
principles, to facilitate teamwork and mitigate trust-impeding pitfalls. There is also
a large corpus of research on robot agents that can learn from their human collabo-
rator as well as provide feedback at deployment time, so as to actively improve task
performance and elicit greater trust from the human.

2.3.1 Interaction Design

Goodrich and Olsen [37] proposed seven general principles for designing ef-
ficient interactions and interfaces for remotely-operated robots. Concrete recom-
mendations include switching between control schemes seamlessly, using natural

cues in input and display elements, allowing the human to manipulate interface and
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control components naturally, externalizing memory by fusing and displaying his-
torical information, and guiding human attention using visual and audio interface
cues. Despite being common sense, all of these recommendations are vital toward
enhancing usability and mitigating frustrations.

Desai et al. [23, 108] derived a set of observations and guidelines toward im-
proving system performance based on an extensive series of interaction studies with
teleoperated search-and-rescue tasks. General themes among recommendations in-
clude coping with limited situational awareness, providing selective feedback, re-
ducing task difficulty, factoring long-term interaction effects, enforcing stable and
high agent reliability during initial interactions, and accommodating the target au-
dience explicitly during interface design. These guidelines are applicable across a
wide range of human-robot teams, and all contribute to enhanced team efficiency
and greater trust.

A common finding among multiple studies showed that trust in robots and
automation can be improved by providing the human user with transparent expla-
nations of the agent’s decision-making process [56]. Dzindolet et al. empirically
substantiated this principle for a visual target detection task, and showed that users
trusted an automated visual aid more after being explained about its limitations
(i.e. sometimes it would falsely recognize tree shadows as humans due to simi-
lar shapes) [29]. Within a peer-based collaborative search domain, Sanders et al.
found that users expressed greater trust toward robot agents that communicated us-
ing rich modalities (e.g. graphics over audio over text) and that provided constant
and verbose feedback [80]. Despite these promising findings, the authors admitted
that the results were marginally significant and expressed the need for larger-sized

experimentation.
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2.3.2 Interactive Feedback and Learning

Continuing with the theme of transparency in the agent’s decision process,
Wang et al. [94] proposed a method to automatically generate explanations of a
robot’s task-level actions by semantically translating the state and output of its
probabilistic planner. After carrying out an online study with simulated military
search tasks, the authors found that users expressed greater trust when the robot
agent provided text descriptions of the rationales and associated confidence levels
to explain its actions. This work demonstrated great potential in the use of dynamic
feedback from the robot agent to improve transparency and trust, although it would
benefit from further investigations, such as real-world deployment results and and
long-term side-effects of repeated communications. In Chapter 6, we propose a
control alteration strategy for the robot agent that similarly conveys hesitation to-
ward seeking to build trust. Also, contrary to operating with discrete semantic task
choices (e.g. “search the restaurant down the street”), our technique generalizes to
continuous control-level actions.

The topic of Learning from Demonstration (LfD) [2] addresses the transfer
of task-domain knowledge from (typically human) experts to robot learners. LfD
is related to several other learning problems with equivalent or similar formula-
tions, including Robot Programming by Demonstration (PbD) [6], imitation learn-
ing [1,73], Inverse Reinforcement Learning [65], and Apprenticeship Learning [1].
These learning agents naturally incite greater trust from their human teachers upon
successfully learning and imitating their demonstrated actions.

Nicolescu and Matari¢ presented a LfD technique where a robot learns to com-
plete a given task by observing changes in the world state caused by a demonstra-

tor [66]. This indirect learning approach has the added benefit of allowing a robot
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student to learn from either a human or robot teacher. Abbeel and Ng presented a so-
lution to imitation learning using the framework of Markov Decision Process with-
out Rewards (MDP\R), and demonstrated the ability for a robot to acquire complex
behaviors such as highway driving by observing humans [1]. Chernova developed
a similar LfD framework in which a robot, initially with no autonomous capabil-
ities, learned new behaviors by incorporating demonstrated state-action pairs into
its policy [14]. A unique aspect of this work was that the robot could request a
demonstration when the action recommended by its policy had an insufficient self-
confidence value. Ross proposed the Data Aggregation (DAgger) framework to
solve imitation learning tasks in an efficient manner, by selectively adding human
demonstrations only in situations where the agent’s current policy failed to perform
adequately [77]. Knox developed the framework of “Training an Agent Manually
via Evaluative Reinforcement”, or TAMER, that incorporated positive and negative
critique values from a human observer into a reinforcement learning formulation to
interactively shape a robot agent’s behaviors over time [53].

Similar to our Adaptation from Participation (AfP) paradigm in Chapter 3,
Dogged Learning is a related interaction scheme that combined concepts from LfD
and sliding autonomy [39]. This technique instantiated a robot agent using an on-
line LfD formulation, and then arbitrated between commands produced from this
agent, from the human demonstrator, and optionally from a reactive controller via
a common measure of confidence. The authors demonstrated empirical results for
a degenerate variant of this novel arbitration process, where human interventions

were always assigned as full confidence.
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2.4 Foundations of Trust-Seeking Robots

We now highlight the core assumptions regarding trust and supervisor-worker
teams made in our research. These assumptions help to define and delineate trust-
related concepts both for our problem formalisms as well as for participants in our
interaction studies.
2.4.1 Characteristics of Supervisor-Worker Teams

Our supervisor-worker team definition in Section 1.2 assumes the following:

1. Goal-oriented purpose: both the robot agent and the human supervisor are
working toward a single and shared set of task goals;

2. Agent/actuator separation: the robot’s high-level sensing, planning, and con-
trol modules are decoupled with its low-level actuator interface, and their in-
termediary channel consist of state-change commands specified with respect
to either the robot’s local frame or a fixed world frame;

3. Parametrized agent: the autonomous agent onboard the robot has various
(discrete and continuous) configuration parameters, which can be altered dur-
ing operations to change its behaviors;

4. Human control authority: all intervening commands from the human are ex-
ecuted by the robot’s actuator block and thus override the control signals
generated by its autonomous agent;

5. Asymmetric relationship: all software onboard the robot accepts the human’s
feedback and carries out the human’s commands without questioning their
legitimacy or safety;

6. Supervisor attentiveness: the human supervisor is assumed to be actively
engaged in the team and continuously attentive to the robot agent’s actions

and its task progress.
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2.4.2 Representation of Human-Robot Trust State

Our research adheres to a “performance-centric” definition of trust and as-
sumes that the robot agent always maintains good intentions and is never decep-
tive. This trust definition is shared by numerous other systems and studies in the
human-automation and human-robot interaction literature (e.g. [23,64,107]). Also,
in a supervisor-worker team, the human and the robot agent are working together
toward a common set of task goals. Therefore, this setup limits the utility of decep-
tion due to the lack of different task objectives or utility functions. Furthermore, by
focusing solely on performance-centric bases, we can factor out the vast number of
intention-centric trust factors and concentrate the scope of our empirical studies on
trust dynamics in Chapter 4.

Another attribute of trust follows from our assumptions that the robot agent is
always motivated and also always yields to the human’s commands without ques-
tion. Consequently, we assume that these robot agents always have absolute and
full trust in their supervisor’s capabilities. This assumption enables our research to
focus solely on the unidirectional trust characterization and quantification from the
human supervisor to the robot agent, without worrying about reciprocal aspects.

We chose to represent the human’s trust state ¢ as a continuous value over
an closed interval, i.e. ¢ € [0,1]. This continuous representation captures the
magnitude of change in the trust state, which is useful for designing trust-induced
agent behaviors that are sensitive only to salient trust changes. The topic of salient
trust-induced behavior alterations will be discussed further in Chapter 6. Another
benefit of this representation is the ability to apply continuous-state regression and
inference techniques for estimating the supervisor’s trust state. Our probabilistic
trust model in Chapter 5 places a belief over this interval scale, which allows it to
distinguish between distrust (i.e. low mean value) versus uncertainty (i.e. large

variance). Furthermore, having a bounded trust space is helpful in practice when
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prompting users to report their trust state during a questionnaire, and facilitates
comparisons between trust feedback from different users. Our methodology for
trust elicitation will be discussed in Chapter 4.

2.4.3 Development of Trust-Seeking Behaviors

Our realizations of trust-seeking robot agents incorporate many established
trust-eliciting design principles [23,37]. Given their importance and relevance,
we consider these design-time elements as standard and mandatory features that
should be implemented on all robot agents. In contrast, the main thrust of this thesis
revolves around deployment-time approaches for the robot agent to elicit trust by
changing its behaviors dynamically.

An important point of distinction among such behavior changes is that some
are merely temporarily altered in reaction to certain interaction events, while other
changes are adapted in a committal and permanent manner akin to the accumu-
lation of knowledge. Chapter 3 will propose a computational method for a robot
agent to learn from its human supervisor’s occasional intervening commands and
adapt its behaviors in a committal way. This formulation assumes that by success-
Sfully imitating the supervisor’s actions, the agent will indirectly gain the human’s
trust over time. Separately, Chapter 6 will present a trust-induced reaction strategy
that momentarily alters the robot’s behaviors, to mitigate impacts of recent trust
loss as well as signal the supervisor for help.

2.5 Autonomous Visual Navigation

Our research on human-robot trust is carried out through the use of an au-
tonomous agent for tracking visual terrain boundaries. This visual navigation agent
draws inspiration from the literature on automated road-following robot controllers.
Pomerleau [71] investigated the use of Artificial Neural Networks along with an
appearance-based approach toward autonomous visual driving. This work contrasts

with approaches using supervised and unsupervised probabilistic models proposed
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by Crisman and Thorpe [19], which was also deployed on Carnegie Mellon’s vehi-
cles to detect and track roads. Ma et al. [60] proposed a system for tracking curve
dynamics in noisy images of roads using an Extended Kalman Filter. Aufrere et
al. [5] presented a probabilistic model for detecting and tracking lanes on paved
roadways within noisy camera frames and demonstrated its implementation within
a real-time road recognition system.

As both research and commercial motor vehicles are being equipped with ever
more intelligent autopilots [12, 58, 92], there has been an emergence of recent re-
search interests on the problem of predicting driver behaviors and incorporating
them into the vehicle’s control and planning systems. Shia et al. developed a semi-
autonomous controller that can infer the driver’s attentiveness and distraction levels,
predict their actions, and intervene when the vehicle is deemed unsafe [86]. Jain et
al. presented an Advanced Driver Assistance System (ADAS) that fused various in-
formation from the driver’s perceived state and the car’s surroundings and warned
users of potential imminent danger [46]. The authors conducted extensive assess-
ments on freeway and city driving datasets and demonstrated that their system could
accurately anticipate maneuvers up to 3.5 seconds before they occurred. Sadigh et
al. formalized a dynamical system for a human-driven car that jointly modeled the
behaviors of both the autonomous and human agents [78]. This model was also
incorporated within a planner that accounted for the actions of the robot affecting
those of the human and vice-versa, which was validated using a simulated setup.
2.6 Robot Platforms

Our research places great emphasis on deploying and evaluating the proposed
trust-seeking robot agents in challenging real-world conditions and onboard diverse
types of mobile robot platforms. This section discusses the main vehicles used in

our quantitative interaction studies and field trials.
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To facilitate re-use of the algorithms and systems developed in this thesis, we
employed the open-sourced Robot Operating System (ROS) [72] to establish a com-
mon abstraction layer. ROS marshals content and requests in standard language-
agnostic data formats between our software modules, as well as with sensor and
low-level control drivers for our different robot platforms. This software ecosystem
also boasts an abundance of community-supported tools for logging, diagnosing,
and post-processing all of the inter-process communicated content.

2.6.1 Unicorn Fixed-Wing Aerial Vehicle

The Unicorn is a rigid-body fixed-wing plane manufactured by Lockheed Mar-
tin Procerus Technologies [90]. As seen in Figure 2-2, this Unmanned Aerial Ve-
hicle (UAV) has a 1 m wingspan built using expanded polypropylene foam, which
efficiently absorbs impact upon landing. An electric motor powered by a pair of 3-

cell lithium polymer batteries drives this vehicle at average ground speeds of 14 m/s

and for durations up to 30 minutes.

Figure 2-2: The Unicorn
is a commercial fixed-wing
Unmanned Aerial Vehicle
with an on-board autopi-
lot  microprocessor  and
gimbal-mounted camera.

The plane’s heading and flight dynamics are regulated by an embedded au-
topilot unit. This vehicle is equipped with numerous sensors, including a 3-axis
accelerometer, a pressure sensor, a magnetometer, and a GPS unit. Communica-
tion between the autopilot and the ground control software is achieved via radio
frequency. An on-board camera transmits live analog video stream at 30 frames

per second via a separate radio frequency. This camera is attached to a gimbal,
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which can be actuated via software through the ground control application. The
Unicorn can operate in several modes ranging from purely manual control to fully
autonomous waypoint-based navigation.

2.6.2 SightedTurtleSim Aerial Vehicle Simulator
DO urial/image_raw

Figure 2-3: SightedTurtleSim is an in-house framework for simulating planar-
controlled aerial robots with downwards-facing cameras. The environment map
can be set to any high-resolution satellite footage or other imagery. Each robot
(turtle icons) is shown along with its camera swath (as colored dashed rectangles).

SightedTurtleSim is an open-source ROS framework for simulating holonomic
aerial robots and synthesizing frames from their downward-facing cameras [96].
We created this tool to enable our research in this thesis by side-stepping robot
deployment challenges such as limited battery and operating range, varied wind
and lighting conditions, prohibitive deployment sites, and persistent safety con-
cerns. SightedTurtleSim simulates aerial vehicles as idealized point robots with ei-
ther fixed linear velocities or throttle and brake input commands to a second-order

plant. For simplicity however, angular velocities are confined to constant-altitude

34



planar motions only. These robots can further be teleported to arbitrary positions
and orientations within a bounded environment.

As shown in Figure 2-3, the graphical front-end depicts a map of the environ-
ment, icons for all spawned robots, as well as each of their camera swaths. The
user can load any image file as the map, and we typically load high-resolution
satellite images to produce realistic scenes from the simulated robots’ cameras. All
functionalities above can be procedurally triggered via standard ROS messages and
service calls, or alternatively enacted through the graphical user interface. Each

robot’s locomotive and camera settings are specified at spawn time.

2.6.3 Husky Terrestrial Platform

Figure 2—4: The Husky
is a commercially-
available wheeled robot
for outdoor research.
This robot is equipped
with assorted sensors,
including a GPS re-
ceiver, an IMU, a laser
range-finder, and a
camera with adjustable
pitch and roll.

The Husky Unmanned Ground Vehicle (UGV) [76], illustrated in Figure 2—4,
is a wheeled platform commercially available from Clearpath Robotics, designed
for terrestrial robotics research in outdoor environments. Powered by lead-acid bat-
teries, this vehicle has a typical operating duration of 3 hours, while achieving a
maximum speed of 1.0 m/s. Its onboard computer processes and advertises teleme-

try and low-level control channels through standard ROS interfaces.
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This vehicle also serves as a flexible base platform that can house a wide va-
riety of sensors and actuators, including cameras, LIDARs, GPS, and manipula-
tors. Our visual navigation robot agents in this thesis processed frames from a
network-connected front-facing camera with adjustable pose and chest-level posi-
tioning. This sensor is capable of streaming compression video at 30 frames per
second under SVGA resolution (800 x 600 pixels).

2.6.4 SL-Commander All-Terrain Vehicle

The SL-Commander, as seen in Figure 2-5, is an electric All-Terrain Vehicle
(ATV) jointly developed by MacDonald Dettwiler and Associates (MDA), Bom-
bardier Recreational Products (BRP), and Quanser Consulting [67], for the Cana-
dian Space Agency’s planetary research efforts. Its base platform is an electric
side-by-side ATV produced by BRP [10], with the capability to traverse terrain
ranging from paved roads to undulating back-country trails. The SL-Commander
utilizes Ackerman steering and a four-wheel drive with selectable locking differ-
entials, independent suspension, rugged construction and a high-torque propulsion
system based around a 48V electric AC induction motor. This vehicle has been
designed for a comfortable ride on rough terrain and has many passenger safety
features, including a steel roll cage, front and rear ventilated disc brakes, and both
on-board and remote kill switches.

A drive-by-wire system onboard the vehicle replicates many of the operations
typically conducted by a human driver during manual control, including actuation
of the throttle pedal and the steering wheel. Telemetry information, such as wheel
odometry, speed, and battery charge, are interfaced via a Controller Area Network
(CAN) Bus with an onboard Drive Computer. The Drive Computer is responsible
for managing real-time low-level tasks such as steering control, and is also con-
nected to another Smart Computer, which exposes a high-level control interface via

the Joint Architecture for Unmanned Systems (JAUS) SAE AS-4 standard [45]. In
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Figure 2-5: The SL-Commander ATV is a custom research platform featuring a
programmable drive-by-wire control interface and houses many sensors including
cameras, a laser range-finder, a GPS unit, and an IMU.

the autonomous control mode, both the steering wheel and throttle pedal are locked
from human input, although the driver can nevertheless enforce safe operations at
all times via permanent control over the brake pedal and the kill switches.

The SL-Commander is equipped with an impressive slew of sensors, includ-
ing an industrial-grade laser range-finder, high-precision differential GPS and IMU
devices, a high-definition camera with 18x optical zoom mounted on a pan-tilt unit,
and two stereo cameras, and individual wheel cameras.

Along with my colleagues Professor David Meger and Qiwen Zhang, we de-
veloped wrapper modules for the SL-Commander’s sensor and control interfaces to
integrate within ROS. These efforts facilitated the integration of our autonomous
controllers with many community-contributed tools. Time-stamped data frames
from the vehicle’s cameras and laser range-finder were published using standard
ROS message formats and accompanied by meta-data on sensor characteristics.
Throttle and turn rate commands were processed by a custom ROS node that inter-
faced with the Drive Computer’s API. We further modified an existing ROS module

to read and control the state of the frontal camera’s pan-tilt unit.
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Chapter 3
Adaptation from Participation

Our definition of a supervisor-worker human-robot team calls for the human
to help out the autonomous robot via occasional control interventions. Such teams
have the potential to tackle challenging tasks, since they combine the heightened
dexterity and comprehensive planning capabilities of autonomous agents along with
keen instincts and creative problem-solving skills that are innate to humans.

Nevertheless, incorporating a shared control scheme alone does not address
some common issues in robot field deployments. For instance, configuring the au-
tonomous agent’s parameters to optimize performance for a given task instance
requires laborious data collection and expert knowledge of the agent’s internal
workings. Moreover, it can often be mentally straining for the operator to fine-
tune parameter settings during deployment, while juggling between task supervi-
sion and safety monitoring duties. Yet another class of concerns not addressed
by shared control is the need to handle various types of dynamic events that af-
fect the moment-to-moment task performance. Examples include pre-determined
as well as reactionary task switches, changes in the supervisor’s task intent or pref-
erence, varying environmental conditions, and unexpected external perturbations to
the robot’s sensors and actuators.

To address all of the challenges above, we propose to augment shared con-

trol by enabling the agent to adapt its behaviors interactively, into a paradigm that
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we coin as “Adaptation from Participation” (AfP). AfP encourages the human su-
pervisor to focus solely on participating in the team, and without having to worry
about configuring or adjusting the agent’s parameters directly. More importantly,
the robot agent learns from the human’s intermittent control signal and adapts its
parameter settings and behaviors in response, so as to improve task performance on
its own and reduce repeated interventions.

This interaction paradigm allows the robot agent to seek for greater trust indi-
rectly by imitating the human’s actions to adopt a common task intent and prefer-
ence. Behavior adaptation also helps to reduce the likelihood of repeating misbe-
haviors, thus preventing redundant interventions and the tendency for the supervisor
to degenerate into pure teleoperation. We hypothesize that AfP improves the overall
efficiency of supervisor-worker human-robot teams, by striving to achieve superior
task performance, reduced active human workload, and greater user satisfaction.

This chapter begins by formulating the computational problem of realizing
interactive adaptation for parametrized robot agents. We next propose the Adap-
tive Parameter EXploration (APEX) algorithm to implement AfP in an anytime
and parallelized manner. We then assess the potential efficiency gains of the AfP
interaction paradigm by empirically evaluating APEX-enabled boundary tracking
agents for three separate application domains using distinct robot platforms.

3.1 Problem Formalism

Recalling our supervisor-worker team layout in Figure 1-3, the robot agent

can be viewed as a function A that maps its sensory inputs z, parameter settings 6,

and internal state s, into action commands y,. for the robot’s actuator block: I

! The variables 7,7, §,5 are generally multi-dimensional vectors, although we
omit the overline notations here for simplicity.
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(Yr, ) < A (z,0,s) (3.1

Independent of the agent’s operations, the human supervisor can choose to
assume manual control at any moment by issuing intervening commands y,. Im-
portantly, both the human’s commands y;, and the robot’s commands ¥,. consist of
low-level control signals to the actuator block. Also, the agent’s commands y, are
carried out only when the human is not intervening currently, i.e. y, # <.

During periods of human intervention, AfP calls for the agent’s parameter set-
tings 6 to be continuously adjusted to adapt its behaviors and imitate the supervi-
sor’s control signals. Imagine that at each time instant there exists (at least) one
optimal parameter setting 0* that will allow the robot agent to exhibit exemplary
behaviors, as assessed by the supervisor. Importantly, optimal settings for the agent
are altered whenever dynamic events occur, such as changes in task targets, envi-
ronment conditions, or the supervisor’s intent. Although in general these events
and optimal values are not observable by the agent, we make the key assumptions
that the supervisor is constantly attentive, will intervene whenever events cause the
agent to behave in sub-optimal ways, and will specifically steer the the robot to fix
these misbehaviors. Consequently, the agent should adapt its current parameter val-
ues 6 based on the history of previously seen commands {y;,} throughout periods
of intervention, and also assume that once the supervisor stops intervening, then 6
has adapted to within a tolerable margin of 6*.

The objective of AfP is to optimize the human-robot team’s efficiency, as quan-
tified by complementary aspects of task performance, active human workload, and
user satisfaction. These individual measures cannot be combined in general, even
though in some domains such as manufacturing, performance and workload can be

uniformly quantified in terms of financial gains and costs. Nevertheless, we will
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present in Section 3.3.3 an evaluation scheme for the AfP problem that employs
non-parametric statistics to assess the aggregate contributions from these multiple
facets of team efficiency.

3.1.1 Related Problems

The computational problem of Adaptation from Participation is closely related
to the research topic of Learning from Demonstration (LfD). Most notably, both
problems involve optimizing the robot agent’s policy parameters based on observed
human actions.

Nevertheless, AfP differs from LfD in several key aspects that highlight this
problem’s uniqueness and novelty. For instance, conventional LfD realizations take
an episodic approach to learning, whereas AfP is designed specifically to encour-
age online and fluid interactions. Also, conceptually, in LfD human teachers are
asked to focus on teaching new tasks to the agent and correcting its misbehaviors
(e.g. [14]). In contrast, in AfP the human supervisor is responsible for participat-
ing in the team and focus on successfully carrying out the team’s tasks, without
needing to worry about the robot agent’s internal learning process. Furthermore,
research objectives of LfD and AfP are complementary, since LfD seeks to learn
previously unseen tasks with minimal or no prior domain knowledge. On the other
hand, AfP aims to improve the moment-to-moment task performance for a robot
agent that has a certain degree of prior task competence. Finally, perhaps the most
important distinction is that LfD assumes a fixed task goal and thus aims to learn a
stationary optimal policy in a (statistically) unvarying environment. In contrast, we
devised the AfP paradigm specifically to cope with varying task objectives caused
by contextual changes, unexpected environmental disturbances, and evolutions in

the supervisor’s intent and preferences.
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3.2 Adaptive Parameter EXploration (APEX)

We developed an anytime algorithm [112], named as Adaptive Parameter EX-
ploration (APEX), that realizes the AfP paradigm and adapts an arbitrary robot
agent’s parameters during periods of human interventions. APEX maintains mul-
tiple concurrent hypotheses ¢, called particles, of potentially viable agent settings
;. During the time interval between consecutive sensor updates, each particle’s pa-
rameter value 6; is refined so as to produce agent commands that closely imitate the
supervisor’s intervening commands within a fixed-duration recent window. Since
this optimization process is susceptible to overfitting to short-term control signal
noise, APEX selects a winning particle based on its historical imitation consistency
and smooths the refined parameter values into the agent’s settings. This incremental
adaptation approach sidesteps the need to predict occurrences of dynamic interac-
tion events that affect the agent’s moment-to-moment optimal settings.

3.2.1 Applicability and Prerequisites

The APEX algorithm assumes that the supervisor is attentive throughout oper-
ations and will take over control whenever the agent is misbehaving. Consequently,
interventions from the supervisor imply that the robot’s current performance is per-
ceived as sub-optimal and thus requires re-tuning. Chapters 4 and 5 will expand our
investigations to account for intervention causes other than sub-optimal observed
performance, such as preemptive assistance due to worsening task conditions, and
personal propensity for manual control.

We originally designed the APEX add-on module to adapt parameters of arbi-
trary robot agents in a black-box manner, i.e. without altering their internal logic
and without given an analytical form for A. Nevertheless, we assume that each
APEX particle can make simulate the command outputs of the agent given arbi-
trary inputs, state, and parameter values. This ability allows particles to refine pa-

rameter values of black-box agents using numerical gradient-based optimization in
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the duration between consecutive sensory inputs. The success of such an iterative
approach also depends on the agent’s pipeline having significantly faster execution
time than the sensor update interval.

For practicality, we also considered simple robot agents that have a known
linear inverse mapping, i.e. 6 = A~' (x,s) - y. Unfortunately, most robot agents
are sufficiently complex such that obtaining A~ is either impractical or ill-posed
due to the pipeline’s non-linear or non-bijective nature. Nevertheless, autonomous
systems with an accessible A~!, referred to as white-box agents, can rely on lin-
ear least squares to efficiently optimize their parameter values given a set of (non-
degenerate) input-output exemplar pairs.

APEX’s generic design allows it to refine both continuous and discrete param-
eter types. When deploying APEX, one must provide judicious parameter ranges to
ensure that the agent’s command outputs do not saturate or have near-zero gradients
for nearby parameter values. In practice however, we observed that APEX operates
well with even loosely-specified parameter ranges, since its particles are designed
to search and refine hypotheses within the parameter space.

3.2.2 Algorithm

APEX particles iteratively refine their parameter hypothesis on separate exe-
cution threads during the time interval between consecutive sensory inputs. Each
particle 7 is assigned a long-term cost 6;, which is an accumulator term that keeps
track of the consistency of the performance of its searched parameter results over
time. The main APEX procedure manages these optimization threads and operates
before and after executing the agent’s pipeline, as illustrated by Algorithm 1. When-
ever a sensory update becomes available, APEX pauses all particles’ optimization
threads, updates %; based on the quality of each particle’s latest hypothesis, and
smooths the lowest-cost winning particle’s value into the agent’s settings. After

executing the agent’s pipeline A, if the human supervisor is still intervening, then
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Algorithm 1 Adaptive Parameter EXploration (APEX)
Inputs: initial agent parameters 6 and state s
1: initialize hypotheses and long-term costs ¢; <— 0, %; <— 0V
2: loop
3: wait for new sensor data
4 if particle optimization threads are actively refining 6; then
5 for all particles ¢ do
6: pause optimization thread ¢
7
8
9

update long-term cost %;

choose winning particle i* < argmax; ({%;})
update agent’s settings 6 using 6«

10: store prior state s’ < s

11: execute agent’s pipeline y,., s <— A(z, 6, )
12: if y;, # o then

13: store latest data exemplar {z, s', y,}
14: resume all particle optimization threads
15: else

16: G +—0Vi

APEX resumes the optimization processes for all particles after incorporating the
latest input-state-output exemplar tuple; otherwise, during periods of autonomous
control, all particles are disabled, and their long-term costs are also reset.

The optimization thread for each particle 7 continuously refines its parameter
hypothesis ¢; using the 1V most recent training exemplars {Z., S, Yhw } ey o
each consisting of a sensor input instance, the robot agent’s prior state, and the

desired command from the supervisor to imitate. A mean squared cost is used as

the optimization objective:

w
1
cost (0:) = 5= D Nmaw — A (@, 01, 51,)|° (3.2)
w=1

Optimization is carried out using iterative gradient-based search for black-box agents
and linear least squares for white-box agents that have an inverse mapping A !

As an anytime algorithm [112], APEX updates the agent’s settings as soon as
new sensory data becomes available, by integrating the refined parameter values

from a winning particle ¢*. Nevertheless, choosing the winning particle based on
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cost (6;) alone would be short-sighted, as these costs are measured against the W
most recent training exemplars only. Instead, these near-term similarity measures
are folded into the particles’ long-term costs %;, which are then used to determine
the winning particle based on its historical success at consistently imitating the

supervisor’s commands in the past:

C; < 76, + cost (6;) (3.3)

The discount factor v € [0, 1] dictates the relative importance of previously ac-
cumulated performance versus the latest short-term cost. This hyper-parameter
captures the degree of temporal consistency required for a given application con-
text and reduces the likelihood of oscillations between multiple winning particles,
which can lead to jittery and sub-optimal agent behaviors.

Once the winning particle ¢* is determined, its parameter hypothesis is smoothly
integrated into the agent’s settings. Whereas discrete parameter values are copied

directly, continuous parameters §° are smoothed using a learning rate o € (0, 1]:

0° — 0° + o (65 — 6°) (3.4)

The hyper-parameter « also enforces temporal consistency by attenuating short-
term noise in the intervening commands y, caused by factors such as imprecise
human input signals.

Returning to the formulation for the short-term cost, the time window dura-
tion W serves multiple purposes in determining the success of APEX in practice.
For instance, W places emphasis on only the most recent human commands that
presumably address the latest dynamic event during operations. Separately, when
deploying the agent on an embedded system with limited computational power, the

window duration W can be tuned to improve the quality of gradient-based search.

45



In particular, changing W balances between the quality (i.e. cost) of each a gradi-
ent update to # versus the number of parameter updates that can be sampled within
a fixed time interval. Since W is innately related to the interaction context and
task domain, we empirically tuned this hyper-parameter by deploying our bound-
ary tracking agent in test runs and comparing APEX’s online adapted parameters
against post hoc batch-optimized parameter values.

3.2.3 Particle Types

Inspired by Monte Carlo sampling techniques such as particle filtering [91],
APEX uses multiple particle types to explore the parameter space effectively:

e Local search particles use gradient descent line search to iteratively find nu-
merical solutions to locally optimal parameter values for black-box agents;

e Random restart search particles are identical to local search particles except
that they reset to random initial values each time after executing the agent’s
pipeline; they also inherit the latest winning particle’s long-term cost €;+;

e Inverse optimal search particles use the linear inverse mapping A ™! of white-
box agents within a least squares formulation to directly solve for optimal
parameter values;

e A persistence particle is used for both black-box and white-box agent in-
stantiations to preserve the previous winning particle’s state and ensure that
successive parameter updates are never worse than the existing settings.

The above search strategies are designed to adapt continuous parameters while
adhering to a rate of adaptation determined by the learning rate hyper-parameter o.
In contrast, categorical parameters are refined by instantiating multiple particles
for different combinations of discrete configuration settings. This process allows
APEX to determine current discrete configuration settings based on the particles’
long-term costs while enforcing a given rate of adaptation using the discount factor

hyper-parameter .
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3.3 Aerial Coverage User Study with Simulated UAV

We conducted three sets of empirical assessments to validate the hypothe-
sized gains in team efficiency contributed by the Adaptation from Participation
paradigm. During this process, we deployed the APEX algorithm to adapt param-
eters of a vision-based boundary tracking system (see Appendix A for implemen-
tation details), and instantiated three interactive adaptive agents onboard distinct
robot platforms. This section presents a user study involving APEX-enabled in-
teractive agents on flying robots for performing aerial coverage tasks. This study
was carried out under controlled conditions and using a simulated aerial vehicle in
order to assess AfP’s contributions independently from practical deployment con-
cerns such as limited operating range and extraneous disturbances. As complement
to this controlled evaluation, the next two sections elaborate on field trials that as-
sess APEX-enabled interactive agents in real-world settings, deployed on the Husky
wheeled robot and the SL-Commander vehicle respectively.

In this user study, we compared APEX-enabled robot agents against other
common human-robot team configurations, namely:

e APEX BB: a black-box APEX-enabled agent that employed 6 local search
particles, one for each combination of discrete parameter values, as well as 2
random restart search particles and a persistence particle;

e APEX WB: a white-box APEX-enabled boundary tracking agent equipped
with 6 inverse optimal search particles and a persistence particle;

e CONST: a non-adaptive boundary tracking controller with refined parameter
settings that were hand-tuned to ensure competent tracking performance for
multiple types of terrain boundaries;

e MANUAL: a baseline configuration where the robot was controlled solely us-
ing teleoperation, reflecting situations where the supervisor completely dis-

trusted the agent due to persistent poor performance.
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In each study session, the participant collaborated with one of the agent configu-
rations above to control the simulated aerial drone. The objective in each session
involved steering the vehicle over a designated sequence of terrain boundaries and
covering as much of this flight course as possible within a fixed time limit.

3.3.1 Participants

We recruited 15 individuals (1 female) from the Mobile Robotics Lab at McGill
University to engage in this study. Participants were all actively involved in robotics
research, and comprised of 5 undergraduate students, 8 graduate students, 1 post-
doctorate fellow, and 1 professor. We specifically targeted roboticists since they
already work with autonomous robot agents on a regular basis, and they are also
likely to be among early adopters of mainstream robotic technologies.

3.3.2 Infrastructure

To enforce repeatable study conditions, we integrated the boundary tracking
framework to control the SightedTurtleSim holonomic aerial drone simulator (see
Section 2.6.2). Although this robot exhibits idealized vehicular dynamics, frames
from its downward-facing cameras were synthesized from satellite footage to pro-
vide realistic visual stimuli.

We used the APEX algorithm to tweak configuration settings for the planar-
view boundary tracking pipeline. Discrete parameters of this agent comprised
of the boundary type T, € {FEdge, Strip} that differentiated between coastline-
style contours from road-style boundaries, as well as the appearance type 7, €
{Hue, Grayscale, HueV alue Hybrid}, which designated the pixel representation
used for segmenting out the terrain of interest in each frame. After detecting the tar-
get boundary line in each image, its intersection with the frame borders determined
a heading direction to steer the robot along the target boundary. This heading direc-
tion is then fed into a Proportional-Derivative (PD) controller, whose control gains

K,, K; were also regulated by APEX.
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Instructions Time Remaining Coverage Score

Cover left side of highway -> forest road -> coastline 25.6 sec 8303

' Robot Camera View

Figure 3—1: The APEX aerial coverage user study features a two-pane display in-
terface. The left view shows frames from the simulated drone’s downward-facing
camera, overlaid with the detected boundary (blue line) and the agent’s/supervisor’s
angular rate steering commands (blue/green arrows). The right map view depicts
covered/missed portions of the flight course (green/cyan regions), the robot’s cur-
rent position (yellow square near the lower-left corner), and out-of-bound areas
(red-tinted regions).

The display interface for this study is shown in Figure 3—1, and integrates
a live camera feed from the aerial robot, a mini-map of the designated coverage
course, as well as information about the current session’s goals. The map view is
helpful for visualizing overall coverage progress, although the zoomed-in camera
view provided close-up visual details to help users steer along terrain boundaries
reliably. This camera view also incorporates overlays reflecting the state of the
boundary tracking process, such as the detected boundary line in the current camera
frame, as well as steering commands from both the autonomous agent, ., and from
the human supervisor, ¥y.

We designed the boundary tracking agent to continue processing camera frames

even during periods of manual intervention, and to visualize its generated steering
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arrows on screen at all times. This constant feedback aids the supervisor in decid-
ing if the agent is capable of tracking the target boundary on its own, or if further
assistance is needed when the tracker is behaving poorly.

User are provided with a standard dual-joystick gamepad (Sony DualShock®3)
to interact with the boundary tracking agent. The supervisor could engage interven-
ing control at any time by holding down a shoulder button and then manually steer
the vehicle by moving the left analog stick horizontally.

Each interaction session is structured in a game-like manner, and incorporates
both a coverage score as well as a time limit. These gamification elements are de-
signed to motivate participants to remain attentive and enforce adequate tracking
performance [95]. Also, we empirically tuned task conditions such as the camera’s
field of view and the robot’s forward speed and maximum turn rate to provide chal-

lenging experiences and motivate users to delegate the tracking task to the agent.

(b)

Figure 3-2: The flight course for the APEX aerial coverage user study incorporated
terrain boundaries with varying degrees of tracking difficulty, including a straight
highway (a), a narrow forest path (b), and a curvy coastline (c).

Furthermore, the designated flight course incorporated multiple boundary tar-
gets with varying degrees of tracking difficulty. As illustrated in Figure 3-2, these
terrains comprised of a straight Highway with many competing visual boundaries,
a narrow Forest Path with significant tree cover, and a curvy Coastline segment.

This final boundary target is particularly challenging to track for both humans and
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agents since it requires aggressive steering to keep up with the coastline’s constantly
changing landscape.

This study is executed in a fully automated manner to enforce uniform user ex-
perience and remove experimenter bias. At the start of each session, the simulated
robot is displaced to its starting position, and the user can then initiate operations
by pressing a button on the gamepad. During subsequent interactions, the on-screen
interface warns the user whenever the robot deviates from the designated path. If
the participant does not react to these warnings and steer the vehicle back on track
promptly, then the session is automatically reset to its starting state.

3.3.3 Procedure

Administer practice session

Show Engage
R | Teleport drone to 838
Start tutorial > . - free-roam
" starting position .
slides session

Administer agent evaluation sessions

Administer
Teleport drone to Engage user
middle of time-limited End
Highway segment session preference
J questlonnalre

(repeat for 4 ugents in random order:
APEX BB, APEX WB, CONST, MANUAL)

A 4

) 4

Figure 3-3: Flowchart for the APEX aerial coverage user study.

The flowchart for this study is shown in Figure 3-3. Each study run begins
with a brief presentation that explains elements of the interface, the human-robot in-
teraction context, and the adaptive boundary tracking agents being evaluated. This
overview is followed by a non-timed practice session to familiarize the user with the
control interface and task conditions. Subsequently, the agent evaluation phase of
the study consists of 4 aerial coverage sessions, each with a time limit of 3 minutes
and featuring one of the aforementioned human-robot team configurations. The

order of these configurations is randomly determined for each study instance.
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This study compares the overall efficiency of the adaptive agents against base-
line human-robot team configurations. In particular, we compute several evaluation
metrics over the interaction experience at the session-wide level, as well as for in-
dividual terrain boundary segments. The overall task completion is reflected by
the coverage score, which represents the amount of the flight course visited by the
robot’s camera swath. The moment-to-moment boundary tracking accuracy is ob-
tained by analyzing the traveled path and computing the mean distance to ground
truth statistic. Furthermore, the autonomous agent’s reliability is measured by the
agent failure ratio, i.e. the fraction of frames rejected due to detection pipeline fail-
ures. All three performance metrics above are important for determining the level
of overall team efficiency. Another analogous metric is the supervisor intervention
ratio, which ascertains the fraction of frames under manual control, and reflects the
amount of active human workload incurred. Finally, user preference ratings were
solicited after each session, via a 5-point Likert scale [59], to gather subjective
assessments toward each robot agent.

Each metric highlighted above quantifies a distinct aspect of team efficiency
and are all essential in forming a thorough evaluation of the AfP interaction paradigm.
Nevertheless, it can be challenging to determine an overall efficiency ordering of the
human-robot team configurations using these diverse metrics. For instance, if we
wanted to compute a linear aggregate score, we would need to perform extensive
empirical analyses to determine relative weightings for each metric. Separately,
we anecdotally observed a wide range of user behaviors that were consistent with
varied tolerances and emphases on the separate aspects of team efficiency. For in-
stance, some users frequently intervened to ensure that the robot was always flying
above the target boundaries, while others tolerated minor deviations made by the

agent as long as part of the terrain boundary remained in view.
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We addressed these concerns by adopting a non-parametric statistical approach
for establishing the aggregate agent ordering. Specifically, we compute mean rank-
ings of the four robot agent configurations by averaging across per-metric order-
ings. We also use the Friedman test [35] to identify the presence of statistically
significant preferences within these mean rankings. These findings are then refined
using the post hoc Nemenyi test [22] to determine the identity of the preferred agent
configurations. Furthermore, to corroborate these ranking results, we also compute
aggregate orderings using the Kemeny-Young voting method [110], which is useful
for resolving potential cyclic preferences by ranking agent configurations based on
the frequency of pairwise ordering comparisons.

3.3.4 Selection of APEX’s Hyper-Parameters

APEX regulates the rates of change for the agent’s parameter settings using its
learning rate o and discount factor « hyper-parameters. We assessed the effects of
these settings prior to the study by having two expert users complete coverage ses-
sions with the APEX BB agent multiple times while using a {5 x 5} grid sampling
for the hyper-parameter values. The resulting efficiency metric scores were aggre-
gated statistically, and revealed o = 0.4 and 7 = 0.4 as most suitable configuration

for our fast-paced boundary tracking tasks.

Average rate of change for discrete parameters Average rate of change for continuous parameters

0.15
0.1
0.05

120

0.5

0.5 0.5 0.5

Avg no. changes over discrete params
Aggregated S.D. diff on conseq frames

0 1 0 1

Discount Factory Discount factor y

Learning Rate o Learning rate o

() (b)

Figure 3—4: Average rates of change for the agent’s parameters are computed by
aggregating over 2 expert users’ aerial coverage datasets. Variability among discrete
parameters is correlated with APEX’s discount factor v (a), while changes in the
agent’s continuous parameters are affected by APEX’s learning rate « (b).
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Figure 3—4 displays the average rates of change for the boundary tracking
agent’s parameters as functions of « and y. We observe that these hyper-parameters
independently control the rate of adaptation for the agent’s continuous and discrete
settings. In particular, the association between 7 and discrete agent settings is due
to the instantiation of individual APEX particles for all combinations of distinct pa-
rameter values. Since 7 regulates the importance of each particle’s historical search
performance, smaller discount factor values will result in myopic selections with
more frequent parameter changes.

3.3.5 Results and Discussion

Figure 3—5 depicts mean agent rankings for the session-wide scale as well as
separately for each terrain boundary segment. These visualizations are accompa-
nied with statistical analysis resulting from Friedman and post hoc Nemenyi tests,
both suggesting the presence of significant different agent preferences among users.
We corroborated these efficiency orderings for the different human-robot team con-
figurations by computing aggregate rankings using the Kemeny-Young method,
which found identical orderings.

Session-wide rankings revealed the APEX WB adaptive agent to be the most
efficient overall, followed by CONST and APEX BB. All three agents were ranked
higher than the MANUAL teleoperated configuration, although no statistically sig-
nificant differences were found between the adaptive and non-adaptive agents.

Evaluations at the granularity of individual terrain boundaries showed that
the non-adaptive expert-tuned boundary tracker, CONST, outranked both adaptive
agents during the Highway and Forest Path segments. This preference can be at-
tributed to the high quality of the expert-tuned settings of the CONST agent, which
resulted in excellent tracking performance for relatively stable boundaries. Never-

theless, post hoc analyses in Figures 3—5b and 3—5c¢ did not reveal any significant
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Figure 3-5:  Critical
difference plots from
the APEX aerial cov-
erage study revealed
statistically  significant
differences among
the agents’ per-metric
rankings. At the session-
wide scale (a) and
for the coastline seg-
ment (d), users preferred
both the adaptive and
expert-tuned agents,
although post hoc Ne-
menyi test found the
lack of any critical dif-
ferences among agents
(i.e. the presences of
thick horizontal lines
straddling APEX WB,
APEX BB, and CONST).
In contrast, both APEX
WB and CONST config-
urations were ranked
significantly greater for
the highway (b) and
forest path (c) segments.
All  agent rankings
matched the aggregate
orderings resulting from
the Kemeny-Young
voting scheme.

differences between CONST and APEX WB during these terrain segments, thus sug-

gesting that the adaptive agent also attained comparable levels of team efficiency.

During the Coastline segment, the non-adaptive CONST agent was outranked

by both adaptive agents, APEX WB and APEX BB. By analyzing the raw inter-

action experiences, we observed that CONST was not able to track the constantly

changing shape of the coastline boundary despite repeated intervening assistance
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from participants. This finding demonstrated the utility of the Adaptation from Par-
ticipation paradigm, as both APEX agents were able to adjust their steering styles
dynamically after seeing the supervisor aggressively track the boundary target.

All of the aggregate rankings showed consistent preferences of the white-box
variant APEX WB over the black-box agent APEX BB. This result can be naturally
explained by the fact that APEX BB used gradient-based optimization to numeri-
cally approximate the analytical least squares solutions found by APEX WB.

Finally, although a few participants were able to track the target terrains accu-
rately using MANUAL teleoperation, overall this baseline configuration was statisti-
cally the least preferred setting among this study’s population.

In summary, this study showed that APEX-enabled agents contributed to high
degrees of team efficiency, and in particular attained levels to collaboration com-
parable to those from an expert-tuned non-adaptive robot controller. Whereas the
expert-tuned agent required time-consuming manual parameter tweaking by a knowl-
edgeable robot designer, the Adaptation from Participation paradigm helped inter-
active agents attain similar degrees of task competency based only on occasional
intervening assistance from non-expert operators. Furthermore, the AfP paradigm
was shown to be especially advantageous in situations where task conditions varied
wildly, which naturally warranted the need for dynamic behavior adaptation.

3.4 Campus Patrol Field Evaluation with Husky Wheeled Robot

Our second set of evaluations sought to re-substantiate the efficiency gains of
APEX-enabled agents, by moving from a controlled environment in the previous
study to a real-world deployment setting. As seen in Figure 3—6, participants in this
field study were asked to assist diverse types of agents and steer the Husky wheeled
robot to complete terrain patrol tasks on McGill University’s downtown campus. In
addition to coping with real-world constraints such as finite communication range

and dynamic obstacles like pedestrians, these participants also had to continuously
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Figure 3-6: A participant (left) collaborating with the interactive boundary track-
ing agent to steer the Husky robot during the campus patrol field trial while being
monitored by a study conductor (right). Inset: internal state of the interactive agent
(not shown to the participant) depicts the detected terrain boundary (blue line) and
turn rate steering signals from the agent and the operator (blue and green arrows).

monitor the physical well-being of the robot as well as its surroundings while com-
pleting their assigned patrol duties.

These in-field deployments compared the overall efficiency rankings between
the APEX BB adaptive agent, the expert-tuned static boundary tracker CONST, and
the fully teleoperated MANUAL baseline. The white-box agent APEX WB was omit-
ted since the frontal-view boundary tracking agent did not offer a linear inverse
mapping A~! (see Appendix A for details).

In each trial session, the participant interacted with one of the agent config-
urations above to control the Husky robot. The session goal entailed steering the
vehicle at a specified distance alongside a sequence of terrain boundaries while ad-
hering to transition points corresponding to salient visual landmarks such as lamp
posts. Participants were instructed to complete this fixed-length patrol course accu-

rately yet also as quickly as possible.
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3.4.1 Participants

We recruited 7 individuals to collaborate with adaptive and baseline robot
agents during this campus patrol field trial. All participants had previously com-
pleted the user study and thus were accustomed to the supervisor-worker interaction
scheme. Nevertheless, none of the operators had any prior experience controlling
the Husky or similar types of wheeled robots.
3.4.2 Infrastructure

We deployed the frontal-view variant of the boundary tracking agent (see
Appendix A for details) to steer the Husky robot based on visual input from its
tilted front-facing camera. Contrary to the planar-view variant, the frontal-view
control mapping module accounts for the camera’s non-planar pose by projecting
image-plane boundary information onto the vehicle’s ground plane. This is real-
ized through a feature-based control law: we compute the intersection y between
the image-plane boundary line and the bottom of the camera frame, as well as the
slope ¢ of the line, and prescribe the following parametric function for producing

normalized turn rate commands y, € [—1, 1]:

Y = Myx + Mg + M;

The scaling factors M, My, M3 are used to linearly approximate the camera-to-
ground-plane projection transform. These parameters also encode the nominal lat-
eral distance to following alongside a given boundary target. In addition to this
more complex control mapping, the planar-view agent further pre-filters out hori-
zon content in each scene by cropping out the top H, percentage of every camera
frame prior to detecting the ground-plane terrain boundary.

For this terrestrial robot controller, we used APEX to adapt the horizon cut-
off parameter H, discrete appearance 7}, and boundary type 7} specifications for

the visual detection stage, as well as the various control mapping parameters M,
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M, and M3. We specified loosely-estimated ranges for all continuous parameters,
which were obtained during preliminary field testing. During these testing runs,
we also manually refined the learning rate o and discount factor v of the APEX
algorithm, starting from the user study’s settings. The final hyper-parameter values
were set to reflect the slower pace of the Husky robot: o = 0.2, v = 0.7.

The gamepad control interface in this field trial was directly transplanted from
the aerial coverage study. As previously, the user assumed intervening control by
holding down a shoulder button and moving the left analog stick horizontally to
change Husky robot’s steering direction, which always traveled at a fixed speed.

Users were asked to supervise operations by walking alongside the vehicle and
were not provided with a visualization of the boundary tracking process. Although
this third-person perspective offered greater situational awareness of the robot’s
surroundings, the agent’s state was also less transparent. Consequently, we anecdo-
tally observed that operators were more sensitive to momentary agent misbehaviors
and intervened more readily overall. Furthermore, without visual feedback of the
agent’s steering commands, users were forced to adopt a trial-and-error approach
for disengaging control to assess whether the boundary tracking agent has adapted
sufficiently.

Most of the automated infrastructure from the aerial coverage user study were
adapted for this field trial, including data logging and randomized agent ordering
generation. Nevertheless, a human “study conductor” walked alongside each par-
ticipant during the trial sessions and used a separate gamepad to move the Husky
vehicle to its starting location as well as to trigger the start and end of each inter-
action session. As a last-resort safety measure, the conductor’s gamepad could also

be used to teleoperate the Husky while overriding all other control signals.
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(a) Footath (follow at 1.5ft)  (b) Grass-side (follow at 1.0 ft) (c) Curb (follow at 0.5 ft)
Figure 3-7: The test course for the APEX campus patrol field trial consisted of
moving alongside a sequence of terrain boundaries with visually-defined transition
points. Boundary targets had varied visual appearances and included a footpath
segment (a), a grass-side sidewalk section (b), and a road-side curb (c).

As seen in Figure 3-7, the test course for this field trial involved patrolling
alongside three visually distinct terrains, comprising a Footpath, a Grass-side side-
walk, and the Curb of along and curved stretch of road. Participants were instructed
to maintain specific distances laterally between the Husky robot and each boundary
target in order to facilitate our quantitative evaluations. Such a task requirement is
essential to several application domains, including street cleaning and agricultural
robotics.

3.4.3 Procedure

The flowchart for this field trial is shown in Figure 3-8. At the beginning
of each trial run, the participant is briefed on the patrol tasks and the test course.
Next, a free-roam practice session r